Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Newton's Type Estimates Pertaining To Local Fractional Integral Via Generalized P-Convexity With Applications

dc.contributor.author Rashid, Saima
dc.contributor.author Hammouch, Zakia
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Chu, Yu-ming
dc.contributor.author LI, Yong-min
dc.date.accessioned 2022-07-07T11:46:23Z
dc.date.accessioned 2025-09-18T13:28:02Z
dc.date.available 2022-07-07T11:46:23Z
dc.date.available 2025-09-18T13:28:02Z
dc.date.issued 2021
dc.description Hammouch, Zakia/0000-0001-7349-6922 en_US
dc.description.abstract This paper aims to investigate the notion of p-convex functions on fractal sets Double-struck capital R-alpha(0 < alpha <= 1). Based on these novel ideas, we derived an auxiliary result depend on a three-step quadratic kernel by employing generalized p-convexity. Take into account the local fractal identity, we established novel Newton's type variants for the local differentiable functions. Several special cases are apprehended in the light of generalized convex functions and generalized harmonically convex functions. This novel strategy captures several existing results in the relative literature. Application is obtained in cumulative distribution function and generalized special weighted means to confirm the relevance and computational effectiveness of the considered method. Finally, we supposed that the consequences of this paper can stimulate those who are interested in fractal analysis. en_US
dc.identifier.citation Li, Yong-Min...et al. (2021). "NEW NEWTON'S TYPE ESTIMATES PERTAINING to LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p -CONVEXITY with APPLICATIONS", Fractals, Vol. 29, No. 5. en_US
dc.identifier.doi 10.1142/S0218348X21400181
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-85102776197
dc.identifier.uri https://doi.org/10.1142/S0218348X21400181
dc.identifier.uri https://hdl.handle.net/20.500.12416/13126
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Fractals
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Generalized Convex Function en_US
dc.subject Generalized Harmonically Convex Function en_US
dc.subject Generalized P-Convex Functions en_US
dc.subject Newton'S Type Inequality en_US
dc.subject Fractal Sets en_US
dc.title New Newton's Type Estimates Pertaining To Local Fractional Integral Via Generalized P-Convexity With Applications en_US
dc.title NEW NEWTON'S TYPE ESTIMATES PERTAINING to LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p -CONVEXITY with APPLICATIONS tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hammouch, Zakia/0000-0001-7349-6922
gdc.author.scopusid 56268811800
gdc.author.scopusid 57200041124
gdc.author.scopusid 12768922000
gdc.author.scopusid 7005872966
gdc.author.scopusid 9839077200
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Hammouch, Zakia/D-3532-2011
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [LI, Yong-min] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Binh Duong Province, Vietnam; [Hammouch, Zakia] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung 40402, Taiwan; [Hammouch, Zakia] Moulay Ismail Univ, Ecole Normale Super, Meknes 5000, Morocco; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Chu, Yu-ming] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2140018
gdc.description.volume 29 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3118786038
gdc.identifier.wos WOS:000683456000003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.5291154E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords generalized convex function
gdc.oaire.keywords generalized harmonically convex function
gdc.oaire.keywords Newton-type inequality
gdc.oaire.keywords fractal sets
gdc.oaire.keywords Convexity of real functions in one variable, generalizations
gdc.oaire.keywords generalized \(p\)-convex functions
gdc.oaire.popularity 1.2588765E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 5.72535347
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 14
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 26
gdc.publishedmonth 8
gdc.scopus.citedcount 26
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 23
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files