New Newton's Type Estimates Pertaining To Local Fractional Integral Via Generalized P-Convexity With Applications
| dc.contributor.author | Rashid, Saima | |
| dc.contributor.author | Hammouch, Zakia | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Chu, Yu-ming | |
| dc.contributor.author | LI, Yong-min | |
| dc.date.accessioned | 2022-07-07T11:46:23Z | |
| dc.date.accessioned | 2025-09-18T13:28:02Z | |
| dc.date.available | 2022-07-07T11:46:23Z | |
| dc.date.available | 2025-09-18T13:28:02Z | |
| dc.date.issued | 2021 | |
| dc.description | Hammouch, Zakia/0000-0001-7349-6922 | en_US |
| dc.description.abstract | This paper aims to investigate the notion of p-convex functions on fractal sets Double-struck capital R-alpha(0 < alpha <= 1). Based on these novel ideas, we derived an auxiliary result depend on a three-step quadratic kernel by employing generalized p-convexity. Take into account the local fractal identity, we established novel Newton's type variants for the local differentiable functions. Several special cases are apprehended in the light of generalized convex functions and generalized harmonically convex functions. This novel strategy captures several existing results in the relative literature. Application is obtained in cumulative distribution function and generalized special weighted means to confirm the relevance and computational effectiveness of the considered method. Finally, we supposed that the consequences of this paper can stimulate those who are interested in fractal analysis. | en_US |
| dc.identifier.citation | Li, Yong-Min...et al. (2021). "NEW NEWTON'S TYPE ESTIMATES PERTAINING to LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p -CONVEXITY with APPLICATIONS", Fractals, Vol. 29, No. 5. | en_US |
| dc.identifier.doi | 10.1142/S0218348X21400181 | |
| dc.identifier.issn | 0218-348X | |
| dc.identifier.issn | 1793-6543 | |
| dc.identifier.scopus | 2-s2.0-85102776197 | |
| dc.identifier.uri | https://doi.org/10.1142/S0218348X21400181 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13126 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Fractals | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Generalized Convex Function | en_US |
| dc.subject | Generalized Harmonically Convex Function | en_US |
| dc.subject | Generalized P-Convex Functions | en_US |
| dc.subject | Newton'S Type Inequality | en_US |
| dc.subject | Fractal Sets | en_US |
| dc.title | New Newton's Type Estimates Pertaining To Local Fractional Integral Via Generalized P-Convexity With Applications | en_US |
| dc.title | NEW NEWTON'S TYPE ESTIMATES PERTAINING to LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p -CONVEXITY with APPLICATIONS | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Hammouch, Zakia/0000-0001-7349-6922 | |
| gdc.author.scopusid | 56268811800 | |
| gdc.author.scopusid | 57200041124 | |
| gdc.author.scopusid | 12768922000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 9839077200 | |
| gdc.author.wosid | Rashid, Saima/Aaf-7976-2021 | |
| gdc.author.wosid | Hammouch, Zakia/D-3532-2011 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [LI, Yong-min] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Binh Duong Province, Vietnam; [Hammouch, Zakia] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung 40402, Taiwan; [Hammouch, Zakia] Moulay Ismail Univ, Ecole Normale Super, Meknes 5000, Morocco; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Chu, Yu-ming] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2140018 | |
| gdc.description.volume | 29 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3118786038 | |
| gdc.identifier.wos | WOS:000683456000003 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 13.0 | |
| gdc.oaire.influence | 3.5291154E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | generalized convex function | |
| gdc.oaire.keywords | generalized harmonically convex function | |
| gdc.oaire.keywords | Newton-type inequality | |
| gdc.oaire.keywords | fractal sets | |
| gdc.oaire.keywords | Convexity of real functions in one variable, generalizations | |
| gdc.oaire.keywords | generalized \(p\)-convex functions | |
| gdc.oaire.popularity | 1.2588765E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 5.72535347 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 14 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 26 | |
| gdc.publishedmonth | 8 | |
| gdc.scopus.citedcount | 26 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 23 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
