A Kamenev-Type Oscillation Result for a Linear (1+α)-Order Fractional Differential Equation
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science inc
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
Yes
Abstract
We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1). (C) 2015 Elsevier Inc. All rights reserved.
Description
Keywords
Fractional Differential Equation, Oscillatory Solution, Caputo Differential Operator, Riccati Inequality, Averaging Of Coefficients, Classical Analysis and ODEs (math.CA), FOS: Mathematics
Turkish CoHE Thesis Center URL
Fields of Science
0101 mathematics, 01 natural sciences
Citation
Baleanu, Dumitru; Mustafa, Octavian G.; O'Regan, Donal, "A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation", Applied Mathematics and Computation, 259, pp. 374-378, (2015).
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
5
Source
Applied Mathematics and Computation
Volume
259
Issue
Start Page
374
End Page
378
PlumX Metrics
Citations
CrossRef : 4
Scopus : 12
Captures
Mendeley Readers : 2
Google Scholar™


