Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Kamenev-Type Oscillation Result for a Linear (1+α)-Order Fractional Differential Equation

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

Yes
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1). (C) 2015 Elsevier Inc. All rights reserved.

Description

Keywords

Fractional Differential Equation, Oscillatory Solution, Caputo Differential Operator, Riccati Inequality, Averaging Of Coefficients, Classical Analysis and ODEs (math.CA), FOS: Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

0101 mathematics, 01 natural sciences

Citation

Baleanu, Dumitru; Mustafa, Octavian G.; O'Regan, Donal, "A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation", Applied Mathematics and Computation, 259, pp. 374-378, (2015).

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
5

Source

Applied Mathematics and Computation

Volume

259

Issue

Start Page

374

End Page

378
PlumX Metrics
Citations

CrossRef : 4

Scopus : 12

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.46284139

Sustainable Development Goals