A Kamenev-Type Oscillation Result for a Linear (1+α)-Order Fractional Differential Equation
| dc.contributor.author | Mustafa, Octavian G. | |
| dc.contributor.author | O'Regan, Donal | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-05-02T15:42:07Z | |
| dc.date.accessioned | 2025-09-18T16:07:33Z | |
| dc.date.available | 2020-05-02T15:42:07Z | |
| dc.date.available | 2025-09-18T16:07:33Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1). (C) 2015 Elsevier Inc. All rights reserved. | en_US |
| dc.description.publishedMonth | 5 | |
| dc.description.sponsorship | The authors are indebted to the referees for several insightful comments leading to a revision of the original version of the present note. This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. Gr/34/11. The authors, therefore, acknowledge with thanks DSR technical and financial support. The work of O.G.M. has been supported partially, during this revision, by the grant 41C/27.01.2014, awarded in the internal grant competition of the University of Craiova. | en_US |
| dc.description.sponsorship | Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [Gr/34/11]; DSR; University of Craiova [41C/27.01.2014] | en_US |
| dc.identifier.citation | Baleanu, Dumitru; Mustafa, Octavian G.; O'Regan, Donal, "A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation", Applied Mathematics and Computation, 259, pp. 374-378, (2015). | en_US |
| dc.identifier.doi | 10.1016/j.amc.2015.02.045 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.issn | 1873-5649 | |
| dc.identifier.scopus | 2-s2.0-84924870505 | |
| dc.identifier.uri | https://doi.org/10.1016/j.amc.2015.02.045 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14797 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science inc | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Differential Equation | en_US |
| dc.subject | Oscillatory Solution | en_US |
| dc.subject | Caputo Differential Operator | en_US |
| dc.subject | Riccati Inequality | en_US |
| dc.subject | Averaging Of Coefficients | en_US |
| dc.title | A Kamenev-Type Oscillation Result for a Linear (1+α)-Order Fractional Differential Equation | en_US |
| dc.title | A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Mustafa, Genghiz Octavian | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 7004046718 | |
| gdc.author.scopusid | 36049459000 | |
| gdc.author.wosid | O'Regan, Donal/I-3184-2015 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Bucuresti, Romania; [Mustafa, Octavian G.] Univ Craiova, Fac Math & Exact Sci, Craiova 200534, Romania; [O'Regan, Donal] Natl Univ Ireland Univ Coll Galway, Sch Math Stat & Appl Math, Galway, Ireland | en_US |
| gdc.description.endpage | 378 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 374 | en_US |
| gdc.description.volume | 259 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2041397310 | |
| gdc.identifier.wos | WOS:000353393700033 | |
| gdc.openalex.fwci | 2.46284139 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.scopus.citedcount | 12 | |
| gdc.wos.citedcount | 12 | |
| relation.isAuthorOfPublication | 666ca8b3-5f8e-4f44-804e-8ad944bc2938 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | 666ca8b3-5f8e-4f44-804e-8ad944bc2938 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |