Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Model selection uncertainties and model averaging in autoregressive time series models

dc.authorid Yazici, Mehmet/0000-0003-2924-9865
dc.authorscopusid 55014217100
dc.authorscopusid 35241352200
dc.authorwosid Yazici, Mehmet/Gwz-2001-2022
dc.contributor.author Islam, M. Qamarul
dc.contributor.author Yazıcı, Mehmet
dc.contributor.author Yazici, Mehmet
dc.contributor.authorID 144084 tr_TR
dc.contributor.other İktisat
dc.date.accessioned 2017-04-25T10:37:58Z
dc.date.available 2017-04-25T10:37:58Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp [Islam, M. Qamarul; Yazici, Mehmet] Cankaya Univ, Dept Econ, Ankara, Turkey en_US
dc.description Yazici, Mehmet/0000-0003-2924-9865 en_US
dc.description.abstract Selecting the correct lag order is necessary in order to avoid model specification errors in autoregressive (AR) time series models. Here we explore the problem of lag order selection in such models. This study provides an in-depth but easy understanding of the model selection mechanism to the practitioners in various fields of applied research. Several interesting findings are reported and through these the pitfalls of the model selection procedures are exposed. In particular, we show that the whole exercise of model selection and subsequent statistical inference invariably depends upon unknown entities, namely the true values of parameters in the model. The model averaging technique is proposed as an alternative to the common practice of model selection and it is shown that, as a result, the properties of post-model-selection estimates substantially improve. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation İslam, M.Q., Yazıcı, M. (2012). Model selection uncertainties and model averaging in autoregressive time series models. Pakistan Journal Of Statistics, 28(2), 239-252. en_US
dc.identifier.endpage 252 en_US
dc.identifier.issn 1012-9367
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-84861417644
dc.identifier.scopusquality Q3
dc.identifier.startpage 239 en_US
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000305093100006
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Isoss Publ en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Ar Models en_US
dc.subject Lag Order en_US
dc.subject Model Specification en_US
dc.subject Model Selection Criteria en_US
dc.title Model selection uncertainties and model averaging in autoregressive time series models tr_TR
dc.title Model Selection Uncertainties and Model Averaging in Autoregressive Time Series Models en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 02e2c039-f4df-42e5-ad8c-b569f9d4c9cc
relation.isAuthorOfPublication.latestForDiscovery 02e2c039-f4df-42e5-ad8c-b569f9d4c9cc
relation.isOrgUnitOfPublication d09f65f8-a5a4-46a9-97c8-dd42f4e7c29e
relation.isOrgUnitOfPublication.latestForDiscovery d09f65f8-a5a4-46a9-97c8-dd42f4e7c29e

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: