Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Survey of Applying Machine Learning Techniques for Credit Rating: Existing Models and Open Issues

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Springer international Publishing Ag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Yönetim Bilişim Sistemleri
Bölümün amacı farklı disiplinleri entegre ederek bilgiyi yaratan, depoloyan, erişimi sağlayan ve bu depolanan veriden yeni bilgi ortaya çıkarabilen mezunlar yetiştirmektir. Mezunlarımızın analitik düşünceye sahip, yönetim ve bilişim süreçlerini bilen, tasarlayabilen ve yönetebilen bireyler olmaları hedeflenmektedir. 

Journal Issue

Events

Abstract

In recent years, machine learning techniques have been widely applied for credit rating. To make a rational comparison of performance of different learning-based credit rating models, we focused on those models that are constructed and validated on the two mostly used Australian and German credit approval data sets. Based on a systematic review of literatures, we further compare and discuss about the performance of existing models. In addition, we identified and illustrated the limitations of existing works and discuss about some open issues that could benefit future research in this area.

Description

Pusatli, Tolga/0000-0002-2303-8023; Xu, Min/0000-0001-9581-8849

Keywords

Credit Rating, Single Classifier Models, Hybrid Learning Models, Literature Survey

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Wang, X.; Xu, M.; Pusatli, Ö.T., "A Survey of Applying Machine Learning Techniques for Credit Rating: Existing Models and Open Issues", Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9490, (2015).

WoS Q

N/A

Scopus Q

Q3

Source

22nd International Conference on Neural Information Processing (ICONIP) -- NOV 09-12, 2015 -- Istanbul, TURKEY

Volume

9490

Issue

Start Page

122

End Page

132