Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods

dc.authorscopusid 6507776586
dc.authorscopusid 57216788522
dc.authorscopusid 55930673600
dc.authorscopusid 57216784467
dc.authorscopusid 57216783937
dc.authorscopusid 56183279400
dc.authorwosid Bilgili, Mirace/Abb-3286-2021
dc.authorwosid Demir, Nilsun/H-7762-2012
dc.contributor.author Ureten, Kemal
dc.contributor.author Arslan, Tayfun
dc.contributor.author Gultekin, Korcan Emre
dc.contributor.author Demir, Ayse Nur Demirgoz
dc.contributor.author Ozer, Hafsa Feyza
dc.contributor.author Bilgili, Yasemin
dc.date.accessioned 2024-03-05T12:59:46Z
dc.date.available 2024-03-05T12:59:46Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, Kirikkale, Turkey; [Ureten, Kemal] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Arslan, Tayfun; Gultekin, Korcan Emre] Kirikkale Univ, Fac Med, Dept Internal Med, Kirikkale, Turkey; [Demir, Ayse Nur Demirgoz] Afyonkarahisar City Hosp, Dept Phys Therapy & Rehabil, Afyon, Turkey; [Ozer, Hafsa Feyza] Bartin City Hosp, Dept Phys Therapy & Rehabil, Bartin, Turkey; [Bilgili, Yasemin] Kirikkale Univ, Fac Med, Dept Radiol, Kirikkale, Turkey en_US
dc.description.abstract Objective The incidence of osteoarthritis is gradually increasing in public due to aging and increase in obesity. Various imaging methods are used in the diagnosis of hip osteoarthritis, and plain pelvic radiography is the first preferred imaging method in the diagnosis of hip osteoarthritis. In this study, we aimed to develop a computer-aided diagnosis method that will help physicians for the diagnosis of hip osteoarthritis by interpreting plain pelvic radiographs. Materials and methods In this retrospective study, convolutional neural networks were used and transfer learning was applied with the pre-trained VGG-16 network. Our dataset consisted of 221 normal hip radiographs and 213 hip radiographs with osteoarthritis. In this study, the training of the network was performed using a total of 426 hip osteoarthritis images and a total of 442 normal pelvic images obtained by flipping the raw data set. Results Training results were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated by using the confusion matrix. We achieved accuracy, sensitivity, specificity and precision results at 90.2%, 97.6%, 83.0%, and 84.7% respectively. Conclusion We achieved promising results with this computer-aided diagnosis method that we tried to develop using convolutional neural networks based on transfer learning. This method can help clinicians for the diagnosis of hip osteoarthritis while interpreting plain pelvic radiographs, also provides assistance for a second objective interpretation. It may also reduce the need for advanced imaging methods in the diagnosis of hip osteoarthritis. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Üreten, Kemal;...et.al. (2020). "Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods", Skeletal Radiology, Vol.49, No.9, pp.1369-1374. en_US
dc.identifier.doi 10.1007/s00256-020-03433-9
dc.identifier.endpage 1374 en_US
dc.identifier.issn 0364-2348
dc.identifier.issn 1432-2161
dc.identifier.issue 9 en_US
dc.identifier.pmid 32248444
dc.identifier.scopus 2-s2.0-85084652939
dc.identifier.scopusquality Q2
dc.identifier.startpage 1369 en_US
dc.identifier.uri https://doi.org/10.1007/s00256-020-03433-9
dc.identifier.volume 49 en_US
dc.identifier.wos WOS:000523403800001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 42
dc.subject Hip Osteoarthritis en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Vgg-16 Network en_US
dc.subject Transfer Learning en_US
dc.title Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods tr_TR
dc.title Detection of Hip Osteoarthritis by Using Plain Pelvic Radiographs With Deep Learning Methods en_US
dc.type Article en_US
dc.wos.citedbyCount 38
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: