Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Meshfree numerical integration for some challenging multi-term fractional order PDEs

Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Mathematical Sciences-aims

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Fractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grunwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using L-infinity-norm. Stability and convergence analysis are also discussed.

Description

Samad, Abdul/0000-0002-0887-9860

Keywords

Multi-Term Fractional Derivatives, Caputo And Grunwald-Letnikov Derivatives, Radial Basis Function Method

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Samad, Abdul; Siddique, Imran; Jarad, Fahd. (2022). "Meshfree numerical integration for some challenging multi-term fractional order PDEs", AIMS Mathematics, Vol.7, No.8, pp.14249-14269.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

7

Issue

8

Start Page

14249

End Page

14269