Meshfree numerical integration for some challenging multi-term fractional order PDEs
dc.authorid | Samad, Abdul/0000-0002-0887-9860 | |
dc.authorscopusid | 57218940012 | |
dc.authorscopusid | 24436604100 | |
dc.authorscopusid | 15622742900 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Siddique, Imran/Acg-3403-2022 | |
dc.authorwosid | Samad, Abdul/Isb-6584-2023 | |
dc.contributor.author | Samad, Abdul | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Siddique, Imran | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-04-25T07:31:42Z | |
dc.date.available | 2024-04-25T07:31:42Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Samad, Abdul] Northwest Univ, Sch Math, Xian 710127, Peoples R China; [Siddique, Imran] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
dc.description | Samad, Abdul/0000-0002-0887-9860 | en_US |
dc.description.abstract | Fractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grunwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using L-infinity-norm. Stability and convergence analysis are also discussed. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Samad, Abdul; Siddique, Imran; Jarad, Fahd. (2022). "Meshfree numerical integration for some challenging multi-term fractional order PDEs", AIMS Mathematics, Vol.7, No.8, pp.14249-14269. | en_US |
dc.identifier.doi | 10.3934/math.2022785 | |
dc.identifier.endpage | 14269 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85131557684 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 14249 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2022785 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000810758800001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Multi-Term Fractional Derivatives | en_US |
dc.subject | Caputo And Grunwald-Letnikov Derivatives | en_US |
dc.subject | Radial Basis Function Method | en_US |
dc.title | Meshfree numerical integration for some challenging multi-term fractional order PDEs | tr_TR |
dc.title | Meshfree Numerical Integration for Some Challenging Multi-Term Fractional Order Pdes | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |