Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Meshfree numerical integration for some challenging multi-term fractional order PDEs

dc.contributor.authorJarad, Fahd
dc.contributor.authorSiddique, Imran
dc.contributor.authorJarad, Fahd
dc.contributor.authorID234808tr_TR
dc.date.accessioned2024-04-25T07:31:42Z
dc.date.available2024-04-25T07:31:42Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractFractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grünwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using L∞-norm. Stability and convergence analysis are also discussed.en_US
dc.identifier.citationSamad, Abdul; Siddique, Imran; Jarad, Fahd. (2022). "Meshfree numerical integration for some challenging multi-term fractional order PDEs", AIMS Mathematics, Vol.7, No.8, pp.14249-14269.en_US
dc.identifier.doi0.3934/math.2022785
dc.identifier.endpage14269en_US
dc.identifier.issn24736988
dc.identifier.issue8en_US
dc.identifier.startpage14249en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/7925
dc.identifier.volume7en_US
dc.language.isoenen_US
dc.relation.ispartofAIMS Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCaputo And Gru¨Nwald-Letnikov Derivativesen_US
dc.subjectMulti-Term Fractional Derivativesen_US
dc.subjectRadial Basis Function Methoden_US
dc.titleMeshfree numerical integration for some challenging multi-term fractional order PDEstr_TR
dc.titleMeshfree Numerical Integration for Some Challenging Multi-Term Fractional Order Pdesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscoveryc818455d-5734-4abd-8d29-9383dae37406

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
811.23 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: