Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Meshfree numerical integration for some challenging multi-term fractional order PDEs

dc.authorid Samad, Abdul/0000-0002-0887-9860
dc.authorscopusid 57218940012
dc.authorscopusid 24436604100
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Siddique, Imran/Acg-3403-2022
dc.authorwosid Samad, Abdul/Isb-6584-2023
dc.contributor.author Samad, Abdul
dc.contributor.author Jarad, Fahd
dc.contributor.author Siddique, Imran
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-25T07:31:42Z
dc.date.available 2024-04-25T07:31:42Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Samad, Abdul] Northwest Univ, Sch Math, Xian 710127, Peoples R China; [Siddique, Imran] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Samad, Abdul/0000-0002-0887-9860 en_US
dc.description.abstract Fractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grunwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using L-infinity-norm. Stability and convergence analysis are also discussed. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Samad, Abdul; Siddique, Imran; Jarad, Fahd. (2022). "Meshfree numerical integration for some challenging multi-term fractional order PDEs", AIMS Mathematics, Vol.7, No.8, pp.14249-14269. en_US
dc.identifier.doi 10.3934/math.2022785
dc.identifier.endpage 14269 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85131557684
dc.identifier.scopusquality Q1
dc.identifier.startpage 14249 en_US
dc.identifier.uri https://doi.org/10.3934/math.2022785
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000810758800001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Multi-Term Fractional Derivatives en_US
dc.subject Caputo And Grunwald-Letnikov Derivatives en_US
dc.subject Radial Basis Function Method en_US
dc.title Meshfree numerical integration for some challenging multi-term fractional order PDEs tr_TR
dc.title Meshfree Numerical Integration for Some Challenging Multi-Term Fractional Order Pdes en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
811.23 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: