Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Adaptive Estimation of Autoregression Models Under Long-Tailed Symmetric Distribution

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Non-normal innovations in autoregression models frequently occur in practice. In this situation, least squares (LS) estimators are known to be inefficient and non-robust, and maximum likelihood (ML) estimators need to be solved numerically, which becomes a daunting task. In the literature, the modified maximum likelihood (MML) estimation technique has been proposed to obtain the estimators of model parameters. While an explicit solution can be found via this method, the requirement of knowing the shape parameter becomes a drawback, especially in machine learning. In this study, we use the adaptive modified maximum likelihood (AMML) methodology, which combines the MML with Huber's M-estimation so that this assumption is relaxed. The performance of the method in terms of efficiency and robustness is analyzed via simulation and compared to LS, MML and ML estimates that are obtained numerically via the Expectation Conditional Maximization (ECM) algorithm. Test statistics are proposed for the crucial parameters of the model. The results show that the AMML estimators are preferable in most of the settings according to the mean squared error (MSE) criterion and the test statistics based on AMML method are more robust than the others. Furthermore, both real life and synthetic data examples are given.

Description

Keywords

Autoregressive Models, Adaptive Modified Maximum Likelihood, Efficiency, Robustness, Hypothesis Testing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Volume

53

Issue

7

Start Page

3395

End Page

3417
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals