Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Adaptive Estimation of Autoregression Models Under Long-Tailed Symmetric Distribution

dc.contributor.author Yentur, Begum
dc.contributor.author Akkaya, Aysen D.
dc.contributor.author Bayrak, Ozlem Turker
dc.contributor.other 09.01. Ortak Dersler Bölümü
dc.contributor.other 09. Rektörlük
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-09T20:38:17Z
dc.date.available 2025-05-09T20:38:17Z
dc.date.issued 2024
dc.description.abstract Non-normal innovations in autoregression models frequently occur in practice. In this situation, least squares (LS) estimators are known to be inefficient and non-robust, and maximum likelihood (ML) estimators need to be solved numerically, which becomes a daunting task. In the literature, the modified maximum likelihood (MML) estimation technique has been proposed to obtain the estimators of model parameters. While an explicit solution can be found via this method, the requirement of knowing the shape parameter becomes a drawback, especially in machine learning. In this study, we use the adaptive modified maximum likelihood (AMML) methodology, which combines the MML with Huber's M-estimation so that this assumption is relaxed. The performance of the method in terms of efficiency and robustness is analyzed via simulation and compared to LS, MML and ML estimates that are obtained numerically via the Expectation Conditional Maximization (ECM) algorithm. Test statistics are proposed for the crucial parameters of the model. The results show that the AMML estimators are preferable in most of the settings according to the mean squared error (MSE) criterion and the test statistics based on AMML method are more robust than the others. Furthermore, both real life and synthetic data examples are given. en_US
dc.identifier.doi 10.1080/03610918.2022.2103568
dc.identifier.issn 0361-0918
dc.identifier.issn 1532-4141
dc.identifier.scopus 2-s2.0-85135268639
dc.identifier.uri https://doi.org/10.1080/03610918.2022.2103568
dc.identifier.uri https://hdl.handle.net/20.500.12416/9512
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Autoregressive Models en_US
dc.subject Adaptive Modified Maximum Likelihood en_US
dc.subject Efficiency en_US
dc.subject Robustness en_US
dc.subject Hypothesis Testing en_US
dc.title Adaptive Estimation of Autoregression Models Under Long-Tailed Symmetric Distribution en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bayrak, Özlem
gdc.author.scopusid 57211147681
gdc.author.scopusid 6603740998
gdc.author.scopusid 34970726800
gdc.author.wosid Turker Bayrak, Ozlem/Abc-1373-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Yentur, Begum; Akkaya, Aysen D.] Middle East Tech Univ, Dept Stat, Ankara, Turkey; [Bayrak, Ozlem Turker] Cankaya Univ, Dept Intercurricular Courses, Ankara, Turkey en_US
gdc.description.endpage 3417 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 3395 en_US
gdc.description.volume 53 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4289443914
gdc.identifier.wos WOS:000835212000001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.1
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isAuthorOfPublication.latestForDiscovery 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication 79403971-5ab2-4efd-ac9e-f03745af3705
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files