A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water
| dc.contributor.author | Kaplan, Melike | |
| dc.contributor.author | Haque, Md. Rabiul | |
| dc.contributor.author | Osman, M. S. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Kumar, Dipankar | |
| dc.date.accessioned | 2021-01-05T11:38:43Z | |
| dc.date.accessioned | 2025-09-18T12:05:20Z | |
| dc.date.available | 2021-01-05T11:38:43Z | |
| dc.date.available | 2025-09-18T12:05:20Z | |
| dc.date.issued | 2020 | |
| dc.description | Kumar, Dipankar/0000-0003-2949-166X; Osman, M. S./0000-0002-5783-0940 | en_US |
| dc.description.abstract | For different nonlinear time-conformable derivative models, a versatile built-in gadget, namely the generalized exp(-phi(xi))-expansion (GEE) method, is devoted to retrieving different categories of new explicit solutions. These models include the time-fractional approximate long-wave equations, the time-fractional variant-Boussinesq equations, and the time-fractional Wu-Zhang system of equations. The GEE technique is investigated with the help of fractional complex transform and conformable derivative. As a result, we found four types of exact solutions involving hyperbolic function, periodic function, rational functional, and exponential function solutions. The physical significance of the explored solutions depends on the choice of arbitrary parameter values. Finally, we conclude that the GEE method is more effective in establishing the explicit new exact solutions than the exp(-phi(xi))-expansion method. | en_US |
| dc.identifier.citation | Kumar, Dipankar...et al. (2020). "A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water", Frontiers in Physics, vol. 8. | en_US |
| dc.identifier.doi | 10.3389/fphy.2020.00177 | |
| dc.identifier.issn | 2296-424X | |
| dc.identifier.scopus | 2-s2.0-85087181957 | |
| dc.identifier.uri | https://doi.org/10.3389/fphy.2020.00177 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/10559 | |
| dc.language.iso | en | en_US |
| dc.publisher | Frontiers Media Sa | en_US |
| dc.relation.ispartof | Frontiers in Physics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Time-Fractional Approximate Long-Wave Equations | en_US |
| dc.subject | Time-Fractional Variant-Boussinesq Equations | en_US |
| dc.subject | Time-Fractional Wu-Zhang System Of Equations | en_US |
| dc.subject | The Gee Method | en_US |
| dc.subject | Exact Solutions | en_US |
| dc.title | A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water | en_US |
| dc.title | A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kumar, Dipankar/0000-0003-2949-166X | |
| gdc.author.id | Osman, M. S./0000-0002-5783-0940 | |
| gdc.author.scopusid | 57199657577 | |
| gdc.author.scopusid | 56368056100 | |
| gdc.author.scopusid | 57208812808 | |
| gdc.author.scopusid | 55646409100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Kaplan, Melike/X-5045-2019 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Kumar, Dipankar/Aan-5740-2020 | |
| gdc.author.wosid | Osman, M. S./E-3084-2013 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Kumar, Dipankar] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan; [Kumar, Dipankar] Bangabandhu Sheikh Mujibur Rahman Sci & Technol U, Dept Math, Gopalganj, Bangladesh; [Kaplan, Melike] Kastamonu Univ, Art Sci Fac, Dept Math, Kastamonu, Turkey; [Haque, Md. Rabiul] Univ Rajshahi, Dept Math, Rajshahi, Bangladesh; [Osman, M. S.] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt; [Osman, M. S.] Umm Alqura Univ, Fac Appl Sci, Dept Math, Mecca, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.volume | 8 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3036314142 | |
| gdc.identifier.wos | WOS:000546242600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 27.0 | |
| gdc.oaire.influence | 3.8935704E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Financial economics | |
| gdc.oaire.keywords | time-fractional approximate long-wave equations | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | QC1-999 | |
| gdc.oaire.keywords | Variety (cybernetics) | |
| gdc.oaire.keywords | Evolutionary biology | |
| gdc.oaire.keywords | Conformable matrix | |
| gdc.oaire.keywords | exact solutions | |
| gdc.oaire.keywords | Periodic Wave Solutions | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Discrete Solitons in Nonlinear Photonic Systems | |
| gdc.oaire.keywords | the GEE method | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | time-fractional Wu-Zhang system of equations | |
| gdc.oaire.keywords | time-fractional variant-Boussinesq equations | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Exponential function | |
| gdc.oaire.keywords | Statistics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Rational function | |
| gdc.oaire.keywords | Statistical and Nonlinear Physics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Physics and Astronomy | |
| gdc.oaire.keywords | Function (biology) | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Derivative (finance) | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Rogue Waves in Nonlinear Systems | |
| gdc.oaire.popularity | 2.2657543E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.17472174 | |
| gdc.openalex.normalizedpercentile | 0.84 | |
| gdc.opencitations.count | 29 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 35 | |
| gdc.publishedmonth | 6 | |
| gdc.scopus.citedcount | 35 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 32 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
