Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water

dc.contributor.author Kaplan, Melike
dc.contributor.author Haque, Md. Rabiul
dc.contributor.author Osman, M. S.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Kumar, Dipankar
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-01-05T11:38:43Z
dc.date.accessioned 2025-09-18T12:05:20Z
dc.date.available 2021-01-05T11:38:43Z
dc.date.available 2025-09-18T12:05:20Z
dc.date.issued 2020
dc.description Kumar, Dipankar/0000-0003-2949-166X; Osman, M. S./0000-0002-5783-0940 en_US
dc.description.abstract For different nonlinear time-conformable derivative models, a versatile built-in gadget, namely the generalized exp(-phi(xi))-expansion (GEE) method, is devoted to retrieving different categories of new explicit solutions. These models include the time-fractional approximate long-wave equations, the time-fractional variant-Boussinesq equations, and the time-fractional Wu-Zhang system of equations. The GEE technique is investigated with the help of fractional complex transform and conformable derivative. As a result, we found four types of exact solutions involving hyperbolic function, periodic function, rational functional, and exponential function solutions. The physical significance of the explored solutions depends on the choice of arbitrary parameter values. Finally, we conclude that the GEE method is more effective in establishing the explicit new exact solutions than the exp(-phi(xi))-expansion method. en_US
dc.description.publishedMonth 6
dc.identifier.citation Kumar, Dipankar...et al. (2020). "A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water", Frontiers in Physics, vol. 8. en_US
dc.identifier.doi 10.3389/fphy.2020.00177
dc.identifier.issn 2296-424X
dc.identifier.scopus 2-s2.0-85087181957
dc.identifier.uri https://doi.org/10.3389/fphy.2020.00177
dc.identifier.uri https://hdl.handle.net/123456789/10559
dc.language.iso en en_US
dc.publisher Frontiers Media Sa en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Time-Fractional Approximate Long-Wave Equations en_US
dc.subject Time-Fractional Variant-Boussinesq Equations en_US
dc.subject Time-Fractional Wu-Zhang System Of Equations en_US
dc.subject The Gee Method en_US
dc.subject Exact Solutions en_US
dc.title A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water en_US
dc.title A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kumar, Dipankar/0000-0003-2949-166X
gdc.author.id Osman, M. S./0000-0002-5783-0940
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57199657577
gdc.author.scopusid 56368056100
gdc.author.scopusid 57208812808
gdc.author.scopusid 55646409100
gdc.author.scopusid 7005872966
gdc.author.wosid Kaplan, Melike/X-5045-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Kumar, Dipankar/Aan-5740-2020
gdc.author.wosid Osman, M. S./E-3084-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kumar, Dipankar] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan; [Kumar, Dipankar] Bangabandhu Sheikh Mujibur Rahman Sci & Technol U, Dept Math, Gopalganj, Bangladesh; [Kaplan, Melike] Kastamonu Univ, Art Sci Fac, Dept Math, Kastamonu, Turkey; [Haque, Md. Rabiul] Univ Rajshahi, Dept Math, Rajshahi, Bangladesh; [Osman, M. S.] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt; [Osman, M. S.] Umm Alqura Univ, Fac Appl Sci, Dept Math, Mecca, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 8 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3036314142
gdc.identifier.wos WOS:000546242600001
gdc.openalex.fwci 1.17472174
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 29
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 35
gdc.scopus.citedcount 35
gdc.wos.citedcount 32
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files