Analytical properties of the Hurwitz-Lerch zeta function
Loading...
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases.
Description
Keywords
Generalized, Generating Functions, Rodrigues Formula
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Nadeem, Raghib...et al. (2020). "Analytical properties of the Hurwitz-Lerch zeta function", Advances in Difference Equations, Vol. 2020, No. 1.
WoS Q
Scopus Q
Source
Advances in Difference Equations
Volume
2020
Issue
1