Analytical properties of the Hurwitz-Lerch zeta function
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Usman, Talha | |
dc.contributor.author | Nisar, Kottakkaran Sooppy | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2022-03-22T10:41:28Z | |
dc.date.available | 2022-03-22T10:41:28Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases. | en_US |
dc.description.publishedMonth | 9 | |
dc.identifier.citation | Nadeem, Raghib...et al. (2020). "Analytical properties of the Hurwitz-Lerch zeta function", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
dc.identifier.doi | 10.1186/s13662-020-02924-2 | |
dc.identifier.issn | 1687-1839 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/5153 | |
dc.identifier.volume | 2020 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Advances in Difference Equations | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Generalized | en_US |
dc.subject | Generating Functions | en_US |
dc.subject | Rodrigues Formula | en_US |
dc.title | Analytical properties of the Hurwitz-Lerch zeta function | tr_TR |
dc.title | Analytical Properties of the Hurwitz-Lerch Zeta Function | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |