Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods

dc.contributor.author Ureten, Kemal
dc.contributor.author Tokdemir, Gul
dc.contributor.author Tolunay, Tolga
dc.contributor.author Ciceklidag, Murat
dc.contributor.author Atik, Osman Sahap
dc.contributor.author Atalar, Hakan
dc.contributor.authorID 17411 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-23T13:35:30Z
dc.date.accessioned 2025-09-18T16:08:01Z
dc.date.available 2024-01-23T13:35:30Z
dc.date.available 2025-09-18T16:08:01Z
dc.date.issued 2023
dc.description Ciceklidag, Murat/0000-0001-7883-9445 en_US
dc.description.abstract Background:Hip ultrasonography is very important in the early diagnosis of developmental dysplasia of the hip. The application of deep learning-based medical image analysis to computer-aided diagnosis has the potential to provide decision-making support to clinicians and improve the accuracy and efficiency of various diagnostic and treatment processes. This has encouraged new research and development efforts in computer-aided diagnosis. The aim of this study was to evaluate hip sonograms using computer-assisted deep-learning methods. Methods:The study included 376 sonograms evaluated as normal according to the Graf method, 541 images with dysplasia and 365 images with incorrect probe position. To classify the developmental hip dysplasia ultrasound images, transfer learning was applied with pretrained VGG-16, ResNet-101, MobileNetV2 and GoogLeNet networks. The performances of the networks were evaluated with the performance parameters of accuracy, sensitivity, specificity, precision, F1 score, and AUC (area under the ROC curve). Results:The accuracy, sensitivity, specificity, precision, F1 score, and AUC results obtained by testing the VGG-16, ResNet-101, MobileNetV2, and GoogLeNet models showed performance >80%. With the pretrained VGG-19 model, 93%, 93.5%, 96.7%, 92.3%, 92.6%, and 0.99 accuracy, sensitivity, specificity, precision, F1 score, and AUC results were obtained, respectively. Conclusion:In this study, in addition to the ultrasonography images of dysplastic and healthy hips, images were also included of probe malpositioning, and these images were able to be successfully evaluated with deep learning methods. On the sonograms, which provided criteria appropriate for evaluation, successful differentiation could be made of healthy hips and dysplastic hips. en_US
dc.description.publishedMonth 2
dc.identifier.citation Atalar, Hakan;...et al. (2023). "The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods", Journal of Pediatric Orthopaedics, Vol.43, No.2, pp.E132-E137. en_US
dc.identifier.doi 10.1097/BPO.0000000000002294
dc.identifier.issn 0271-6798
dc.identifier.issn 1539-2570
dc.identifier.scopus 2-s2.0-85145954647
dc.identifier.uri https://doi.org/10.1097/BPO.0000000000002294
dc.identifier.uri https://hdl.handle.net/20.500.12416/14933
dc.language.iso en en_US
dc.publisher Lippincott Williams & Wilkins en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hip en_US
dc.subject Ultrasonography en_US
dc.subject Deep Learning en_US
dc.title The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods en_US
dc.title The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ciceklidag, Murat/0000-0001-7883-9445
gdc.author.institutional Tokdemir, Gül
gdc.author.scopusid 8219468000
gdc.author.scopusid 6507776586
gdc.author.scopusid 24333488200
gdc.author.scopusid 48461985400
gdc.author.scopusid 57351469900
gdc.author.scopusid 6603452967
gdc.author.wosid Atik, O./Aab-6824-2022
gdc.author.wosid Çiçeklidağ, Murat/Jcd-5344-2023
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Atalar, Hakan; Tolunay, Tolga; Ciceklidag, Murat] Gazi Univ, Fac Med, Dept Orthopaed & Traumatol, TR-06560 Ankara, Turkiye; [Ureten, Kemal] Ufuk Univ, Fac Med, Dept Rheumatol, Ankara, Turkiye; [Ureten, Kemal] Cankaya Univ, Dept Comp Engn, Ankara, Turkiye; [Tokdemir, Gul] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkiye; [Atik, Osman Sahap] Turkish Joint Dis Fdn, Ankara, Turkiye en_US
gdc.description.endpage E137 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage E132 en_US
gdc.description.volume 43 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4308550750
gdc.identifier.pmid 36344482
gdc.identifier.wos WOS:000909769800017
gdc.openalex.fwci 3.62838688
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 7
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 15
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 10
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication.latestForDiscovery a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files