Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Evaluation of Data Mining for Two Child-Related, Social Risk Issues

dc.contributor.author Lıttle, James
dc.contributor.author Little, J.
dc.contributor.author Waheed, H.A.
dc.contributor.author Rixon, A.
dc.contributor.other Matematik
dc.date.accessioned 2025-09-23T12:48:26Z
dc.date.available 2025-09-23T12:48:26Z
dc.date.issued 2017
dc.description.abstract Two child-related social issues are examined using data mining to determine successful ways of predicting risk. The issues of child truancy and child abuse can be considered similar as both are influenced by, the child’s characteristics, family and environment. The results show that from an initial portfolio of algorithms, a one-nearest neighbour approach works well. We believe that reflects the nature of the problem, where expert opinion classifies each new pupil /case in terms of similar ones, while the one-nearest aspect, reflects the small amount of data we had access to. © 2017 CEUR-WS. All rights reserved. en_US
dc.identifier.citation Little, James; Waheed, Hayder A.; Rixon, Andy (2017). "Evaluation of data mining for two child-related, social risk issues", CEUR Workshop Proceedings, Vol. 2086, pp. 219-231. en_US
dc.identifier.issn 1613-0073
dc.identifier.scopus 2-s2.0-85046039322
dc.identifier.uri https://hdl.handle.net/20.500.12416/15267
dc.language.iso en en_US
dc.publisher CEUR-WS en_US
dc.relation.ispartof CEUR Workshop Proceedings -- 25th Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2017 -- 7 December 2017 through 8 December 2017 -- Dublin -- 135794 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Child Abuse en_US
dc.subject Data Mining en_US
dc.subject Risk en_US
dc.subject Social Ai en_US
dc.subject Truancy en_US
dc.title Evaluation of Data Mining for Two Child-Related, Social Risk Issues en_US
dc.title Evaluation of data mining for two child-related, social risk issues tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57200233208
gdc.author.scopusid 57201748383
gdc.author.scopusid 57993931200
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Little J., Connect Centre, Trinity College Dublin, Ireland; Waheed H.A., Department of Mathematics, Çankaya University, Ankara, Turkey; Rixon A., School of Health, Wellbeing and Social Care, Open University, United Kingdom en_US
gdc.description.endpage 231 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 219 en_US
gdc.description.volume 2086 en_US
gdc.scopus.citedcount 0
gdc.virtual.author Lıttle, James
relation.isAuthorOfPublication 73fb2343-a551-4590-8e38-161146772f4c
relation.isAuthorOfPublication.latestForDiscovery 73fb2343-a551-4590-8e38-161146772f4c
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files