Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Triple Fixed Point Theorems Via Α-Series in Partially Ordered Metric Spaces

dc.contributor.author Tas, Kenan
dc.contributor.author Sihag, Vizender
dc.contributor.author Kumar, Amit
dc.contributor.author Vats, Ramesh Kumar
dc.date.accessioned 2017-03-15T08:54:43Z
dc.date.accessioned 2025-09-18T15:45:06Z
dc.date.available 2017-03-15T08:54:43Z
dc.date.available 2025-09-18T15:45:06Z
dc.date.issued 2014
dc.description Kumar, Amit/0000-0002-3919-3423; Vats, Ramesh Kumar/0000-0002-7974-5341; Tas, Kenan/0000-0001-8173-453X en_US
dc.description.abstract This manuscript has two aims: first we extend the definitions of compatibility and weakly reciprocally continuity, for a trivariate mapping F and a self-mapping g akin to a compatible mapping as introduced by Choudhary and Kundu (Nonlinear Anal. 73:2524-2531, 2010) for a bivariate mapping F and a self-mapping g. Further, using these definitions we establish tripled coincidence and fixed point results by applying the new concept of an alpha-series for sequence of mappings, introduced by Sihag et al. (Quaest. Math. 37:1-6, 2014), in the setting of partially ordered metric spaces. en_US
dc.description.sponsorship Council of Scientific and Industrial Research, Government of India [25(0197)/11/EMR-II] en_US
dc.description.sponsorship The authors gratefully acknowledge the learned referees for providing a suggestion to improve the manuscript. The first author also acknowledges the Council of Scientific and Industrial Research, Government of India, for providing financial assistance under research project no. 25(0197)/11/EMR-II. en_US
dc.identifier.citation Vats, R.K...et al. (2014). Triple fixed point theorems via alpha-series in partially ordered metric spaces. Triple fixed point theorems via alpha-series in partially ordered metric spaces. http://dx.doi.org/10.1186/1029-242X-2014-176 en_US
dc.identifier.doi 10.1186/1029-242X-2014-176
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-84901322858
dc.identifier.uri https://doi.org/10.1186/1029-242X-2014-176
dc.identifier.uri https://hdl.handle.net/20.500.12416/14483
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.ispartof Journal of Inequalities and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Alpha-Series en_US
dc.subject Compatible Mappings en_US
dc.subject Tripled Coincidence Point en_US
dc.subject Tripled Fixed Point en_US
dc.subject Partially Ordered Metric Space en_US
dc.title Triple Fixed Point Theorems Via Α-Series in Partially Ordered Metric Spaces en_US
dc.title Triple fixed point theorems via alpha-series in partially ordered metric spaces tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kumar, Amit/0000-0002-3919-3423
gdc.author.id Vats, Ramesh Kumar/0000-0002-7974-5341
gdc.author.id Tas, Kenan/0000-0001-8173-453X
gdc.author.scopusid 36107222300
gdc.author.scopusid 9279157700
gdc.author.scopusid 55587656500
gdc.author.scopusid 57218181629
gdc.author.wosid Kumar, Amit/Gxh-5691-2022
gdc.author.wosid Vats, Ramesh/Aay-9506-2021
gdc.author.wosid Sihag, Dr Vizender/Jqw-0358-2023
gdc.author.wosid Tas, Kenan/D-8441-2011
gdc.author.yokid 4971
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Vats, Ramesh Kumar; Sihag, Vizender; Kumar, Amit] Natl Inst Technol, Dept Math, Hamirpur 177005, India; [Tas, Kenan] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2014
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2138191479
gdc.identifier.wos WOS:000338228800004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 3.1314207E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Alternative medicine
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Fixed Point Theorems in Metric Spaces
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Series (stratigraphy)
gdc.oaire.keywords Pathology
gdc.oaire.keywords Discrete Mathematics and Combinatorics
gdc.oaire.keywords Biology
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Statistics
gdc.oaire.keywords Pure mathematics
gdc.oaire.keywords Paleontology
gdc.oaire.keywords Astronomy and Astrophysics
gdc.oaire.keywords Fixed point
gdc.oaire.keywords Discrete mathematics
gdc.oaire.keywords Coincidence
gdc.oaire.keywords Finsler Geometry in Physics and Cosmology
gdc.oaire.keywords Coincidence point
gdc.oaire.keywords Partial Ordering
gdc.oaire.keywords Bivariate analysis
gdc.oaire.keywords Physics and Astronomy
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Medicine
gdc.oaire.keywords Geometry and Topology
gdc.oaire.keywords Metric space
gdc.oaire.keywords Analysis
gdc.oaire.keywords Mathematics
gdc.oaire.keywords \(\alpha\)-series
gdc.oaire.keywords Fixed-point theorems
gdc.oaire.keywords Complete metric spaces
gdc.oaire.keywords partially ordered metric space
gdc.oaire.keywords Fixed-point and coincidence theorems (topological aspects)
gdc.oaire.keywords compatible mappings
gdc.oaire.keywords tripled fixed point
gdc.oaire.keywords tripled coincidence point
gdc.oaire.popularity 4.215064E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.opencitations.count 5
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 9
gdc.publishedmonth 5
gdc.scopus.citedcount 9
gdc.virtual.author Taş, Kenan
gdc.wos.citedcount 8
relation.isAuthorOfPublication 9cc98397-8c8f-4713-aa8a-09add1eac3bb
relation.isAuthorOfPublication.latestForDiscovery 9cc98397-8c8f-4713-aa8a-09add1eac3bb
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files