Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Solving Helmholtz Equation With Local Fractional Derivative Operators

dc.contributor.author Jassim, Hassan Kamil
dc.contributor.author Al Qurashi, Maysaa
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2019-12-25T13:13:07Z
dc.date.accessioned 2025-09-18T12:05:43Z
dc.date.available 2019-12-25T13:13:07Z
dc.date.available 2025-09-18T12:05:43Z
dc.date.issued 2019
dc.description Jassim, Hassan Kamil/0000-0001-5715-7752 en_US
dc.description.abstract The paper presents a new analytical method called the local fractional Laplace variational iteration method (LFLVIM), which is a combination of the local fractional Laplace transform (LFLT) and the local fractional variational iteration method (LFVIM), for solving the two-dimensional Helmholtz and coupled Helmholtz equations with local fractional derivative operators (LFDOs). The operators are taken in the local fractional sense. Two test problems are presented to demonstrate the efficiency and the accuracy of the proposed method. The approximate solutions obtained are compared with the results obtained by the local fractional Laplace decomposition method (LFLDM). The results reveal that the LFLVIM is very effective and convenient to solve linear and nonlinear PDEs. en_US
dc.identifier.citation Baleanu, Dumitru; Jassim, Hassan Kamil; Al Qurashi, Maysaa, "Solving Helmholtz Equation with Local Fractional Derivative Operators", Fractal and Fractional, Vol. 3, No. 3, (September 2019). en_US
dc.identifier.doi 10.3390/fractalfract3030043
dc.identifier.issn 2504-3110
dc.identifier.scopus 2-s2.0-85089847200
dc.identifier.uri https://doi.org/10.3390/fractalfract3030043
dc.identifier.uri https://hdl.handle.net/20.500.12416/10700
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Fractal and Fractional
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Coupled Helmholtz Equation en_US
dc.subject Local Fractional Variational Iteration Method en_US
dc.subject Local Fractional Laplace Transform (Lflt) en_US
dc.title Solving Helmholtz Equation With Local Fractional Derivative Operators en_US
dc.title Solving Helmholtz Equation with Local Fractional Derivative Operators tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Jassim, Hassan Kamil/0000-0001-5715-7752
gdc.author.scopusid 7005872966
gdc.author.scopusid 56020904800
gdc.author.scopusid 57045880100
gdc.author.wosid Jassim, Hassan/X-7743-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania; [Baleanu, Dumitru] Tshwane Univ Technol, Fac Sci, Dept Math & Stat, Private Bag X680, ZA-0001 Pretoria, South Africa; [Jassim, Hassan Kamil] Univ Thi Qar, Dept Math, Fac Educ Pure Sci, Nasiriyah 64001, Iraq; [Al Qurashi, Maysaa] King Saud Univ, Coll Sci, Dept Math, POB 2454, Ryad 11451, Saudi Arabia en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 43
gdc.description.volume 3 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2965092881
gdc.identifier.wos WOS:000488110800007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 4.4681867E-9
gdc.oaire.isgreen false
gdc.oaire.keywords QA299.6-433
gdc.oaire.keywords coupled Helmholtz equation
gdc.oaire.keywords local fractional variational iteration method
gdc.oaire.keywords QA1-939
gdc.oaire.keywords Thermodynamics
gdc.oaire.keywords local fractional Laplace transform (LFLT)
gdc.oaire.keywords QC310.15-319
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Analysis
gdc.oaire.popularity 2.8115883E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 2.41092914
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 29
gdc.plumx.crossrefcites 35
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 59
gdc.publishedmonth 9
gdc.scopus.citedcount 59
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 32
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files