Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Solving the Time-Fractional Diffusion Equation Using a Lie Group Integrator

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Vinca inst Nuclear Sci

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this paper, we propose a numerical method to approximate the solutions of time fractional diffusion equation which is in the class of Lie group integrators. Our utilized method, namely fictitious time integration method transforms the unknown dependent variable to a new variable with one dimension more. Then the group preserving scheme is used to integrate the new fractional partial differential equations in the augmented space R3+1. Effectiveness and validity of method demonstrated using two examples.

Description

Hashemi, Mir Sajjad/0000-0002-5529-3125

Keywords

Time Fractional Diffusion Equation, Fictitious Time Integration Method, Caputo Fractional Derivative, Group-Preserving Scheme

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 01 natural sciences

Citation

Hashemi, M.S...et al. (2015). Solving the time-fractional diffusion equation using a lie group integrator. Thermal Science, 19, (77-83). http://dx.doi.org/10.2298/TSCI15S1S77H

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
35

Source

4th International Symposium of South-East European Countries (SEEC) -- APR 03-04, 2003 -- Thessaloniki, GREECE

Volume

19

Issue

Start Page

S77

End Page

S83
PlumX Metrics
Citations

CrossRef : 30

Scopus : 36

Captures

Mendeley Readers : 5

SCOPUS™ Citations

36

checked on Feb 03, 2026

Web of Science™ Citations

39

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.46878232

Sustainable Development Goals

SDG data is not available