Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Endüstri Mühendisliği
Bölümümüzün temel amacı farklı sektörlerde faaliyet gösteren değişik ölçeklerdeki işletme ve kurumların problemlerini bilimsel araştırma yöntemleri ve sistem yaklaşımıyla analiz ve sentezleme, insan ve çevreyi de göz önüne alan modeller kurarak, kaynakları toplum yararına verimli kullanan sürdürülebilir çözümler üretme ve karar verme bilgi ve becerileri kazandırılmış, teknolojiyi etkin kullanan, disiplinlerarası takımlarda çalışmaya yatkın endüstri mühendisleri yetiştirmek, ileri düzeyde araştırmalarla bilime ve ulusal kalkınmaya katkı sağlamaktır.

Journal Issue

Events

Abstract

Automatic Target Recognition (ATR) systems are used as decision support systems to classify the potential targets in military applications. These systems are composed of four phases, which are selection of sensors, preprocessing of radar data, feature extraction and selection, and processing of features to classify potential targets. In this study, the classification phase of an ATR system having heterogeneous sensors is considered. We propose novel multiple criteria classification methods based on the modified Dempster–Shafer theory. Ensemble of classifiers is used as the first step probabilistic classification algorithm. Artificial neural network and support vector machine are employed in the ensemble. Each non-imaginary dataset coming from heterogeneous sensors is classified by both classifiers in the ensemble, and the classification result that has a higher accuracy ratio is chosen for each of the sensors. The proposed data fusion algorithms are used to combine the sensors’ results to reach the final class of the target. We present extensive computational results that show the merits of the proposed algorithms. © 2021, Springer Nature Switzerland AG.

Description

Keywords

Adaptive Distance, Data Fusion, Dempster–Shafer Theory, Mcdm

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Atıcı, Bengü; Karasakal, Esra; Karasakal, Orhan (2020). "Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function", Multiple Criteria Decision Making - Beyond the Information Age, Switzerland: Springer, 2020.

WoS Q

N/A

Scopus Q

Q4

Source

Contributions to Management Science

Volume

Issue

Start Page

1

End Page

35