Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function

dc.authorscopusid 57222721898
dc.authorscopusid 6507642698
dc.authorscopusid 6504422870
dc.contributor.author Atıcı, B.
dc.contributor.author Karasakal, Orhan
dc.contributor.author Karasakal, E.
dc.contributor.author Karasakal, O.
dc.contributor.authorID 216553 tr_TR
dc.contributor.other Endüstri Mühendisliği
dc.date.accessioned 2021-06-16T10:25:34Z
dc.date.available 2021-06-16T10:25:34Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp Atıcı B., ASELSAN A.Ş, Gölbaşı Facilities, Ankara, Turkey, Industrial Engineering Department, Middle East Technical University, Ankara, Turkey; Karasakal E., Industrial Engineering Department, Middle East Technical University, Ankara, Turkey; Karasakal O., Industrial Engineering Department, Çankaya University, Ankara, Turkey en_US
dc.description.abstract Automatic Target Recognition (ATR) systems are used as decision support systems to classify the potential targets in military applications. These systems are composed of four phases, which are selection of sensors, preprocessing of radar data, feature extraction and selection, and processing of features to classify potential targets. In this study, the classification phase of an ATR system having heterogeneous sensors is considered. We propose novel multiple criteria classification methods based on the modified Dempster–Shafer theory. Ensemble of classifiers is used as the first step probabilistic classification algorithm. Artificial neural network and support vector machine are employed in the ensemble. Each non-imaginary dataset coming from heterogeneous sensors is classified by both classifiers in the ensemble, and the classification result that has a higher accuracy ratio is chosen for each of the sensors. The proposed data fusion algorithms are used to combine the sensors’ results to reach the final class of the target. We present extensive computational results that show the merits of the proposed algorithms. © 2021, Springer Nature Switzerland AG. en_US
dc.identifier.citation Atıcı, Bengü; Karasakal, Esra; Karasakal, Orhan (2020). "Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function", Multiple Criteria Decision Making - Beyond the Information Age, Switzerland: Springer, 2020. en_US
dc.identifier.doi 10.1007/978-3-030-52406-7_1
dc.identifier.endpage 35 en_US
dc.identifier.issn 1431-1941
dc.identifier.scopus 2-s2.0-85103813865
dc.identifier.scopusquality Q4
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-52406-7_1
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Contributions to Management Science en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Adaptive Distance en_US
dc.subject Data Fusion en_US
dc.subject Dempster–Shafer Theory en_US
dc.subject Mcdm en_US
dc.title Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function tr_TR
dc.title Heterogeneous Sensor Data Fusion for Target Classification Using Adaptive Distance Function en_US
dc.type Book Part en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f5641d3f-4d57-459d-9b86-9e727ec25ad1
relation.isAuthorOfPublication.latestForDiscovery f5641d3f-4d57-459d-9b86-9e727ec25ad1
relation.isOrgUnitOfPublication b13b59c3-89ea-4b50-b3b2-394f7f057cf8
relation.isOrgUnitOfPublication.latestForDiscovery b13b59c3-89ea-4b50-b3b2-394f7f057cf8

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: