Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Artificial Intelligence Computing Analysis of Fractional Order Covid-19 Epidemic Model

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Cheema, Tahir Nawaz
dc.contributor.author Fadhal, Emad
dc.contributor.author Ibrahim, Rashid I. H.
dc.contributor.author Abdelli, Nouara
dc.contributor.author Raza, Ali
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-11-28T08:11:32Z
dc.date.accessioned 2025-09-18T14:08:50Z
dc.date.available 2023-11-28T08:11:32Z
dc.date.available 2025-09-18T14:08:50Z
dc.date.issued 2023
dc.description Abdelli, Nouara/0000-0002-7531-0981 en_US
dc.description.abstract Artificial intelligence plays a very prominent role in many fields, and of late, this term has been gaining much more popularity due to recent advances in machine learning. Machine learning is a sphere of artificial intelligence where machines are responsible for doing daily chores and are believed to be more intelligent than humans. Furthermore, artificial intelligence is significant in behavioral, social, physical, and biological engineering, biomathematical sciences, and many more disciplines. Fractional-order modeling of a real-world problem is a powerful tool for understanding the dynamics of the problem. In this study, an investigation into a fractional-order epidemic model of the novel coronavirus (COVID-19) is presented using intelligent computing through Bayesian-regularization backpropagation networks (BRBFNs). The designed BRBFNs are exploited to predict the transmission dynamics of COVID-19 disease by taking the dataset from a fractional numerical method based on the Grunwald-Letnikov backward finite difference. The datasets for the fractional-order mathematical model of COVID-19 for Wuhan and Karachi metropolitan cities are trained with BRBFNs for biased and unbiased input and target values. The proposed technique (BRBFNs) is implemented to estimate the integer and fractional-order COVID-19 spread dynamics. Its reliability, effectiveness, and validation are verified through consistently achieved accuracy metrics that depend on error histograms, regression studies, and mean squared error. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [3859] en_US
dc.description.sponsorship ACKNOWLEDGMENTSThis work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 3859). en_US
dc.identifier.citation Raza, Ali...et.al. (2023). "Artificial intelligence computing analysis of fractional order COVID-19 epidemic model", AIP Advances, Vol.13, No.8. en_US
dc.identifier.doi 10.1063/5.0163868
dc.identifier.issn 2158-3226
dc.identifier.scopus 2-s2.0-85168243310
dc.identifier.uri https://doi.org/10.1063/5.0163868
dc.identifier.uri https://hdl.handle.net/20.500.12416/13225
dc.language.iso en en_US
dc.publisher Aip Publishing en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Artificial Intelligence Computing Analysis of Fractional Order Covid-19 Epidemic Model en_US
dc.title Artificial intelligence computing analysis of fractional order COVID-19 epidemic model tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Abdelli, Nouara/0000-0002-7531-0981
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56072492500
gdc.author.scopusid 7005872966
gdc.author.scopusid 57220011351
gdc.author.scopusid 56004095200
gdc.author.scopusid 55326677200
gdc.author.scopusid 58087178300
gdc.author.wosid Abdelli, Nouara/Aaj-9884-2021
gdc.author.wosid Raza, Ali/Abe-1951-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Raza, Ali; Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Raza, Ali] Govt Punjab, Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Higher Educ Dept HED, Lahore 54000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Cheema, Tahir Nawaz] Univ Gujrat, Dept Math, Gujrat 52700, Pakistan; [Fadhal, Emad] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Ibrahim, Rashid I. H.] King Faisal Univ, Coll Sci, Dept Biol Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Abdelli, Nouara] King Faisal Univ, Dept Basic Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 13 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4385709264
gdc.identifier.wos WOS:001045073000006
gdc.openalex.fwci 1.84340035
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 5
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 11
gdc.plumx.newscount 1
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 3
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files