Recovering the Space Source Term for the Fractional-Diffusion Equation With Caputo-Fabrizio Derivative
| dc.contributor.author | Nguyen Hoang Luc | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Le Dinh Long | |
| dc.contributor.author | Le Nhat Huynh | |
| dc.date.accessioned | 2022-12-07T12:03:33Z | |
| dc.date.accessioned | 2025-09-18T12:09:25Z | |
| dc.date.available | 2022-12-07T12:03:33Z | |
| dc.date.available | 2025-09-18T12:09:25Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | This article is devoted to the study of the source function for the Caputo-Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method. | en_US |
| dc.identifier.citation | Huynh, Le Nhat...et al. (2021). "Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative", Journal of Inequalities and Applications, Vol. 2021, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13660-021-02557-3 | |
| dc.identifier.issn | 1029-242X | |
| dc.identifier.scopus | 2-s2.0-85100056573 | |
| dc.identifier.uri | https://doi.org/10.1186/s13660-021-02557-3 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/11412 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Journal of Inequalities and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Source Function | en_US |
| dc.subject | Fractional Diffusion Equation | en_US |
| dc.subject | Caputo-Fabrizio Fractional Derivative | en_US |
| dc.subject | Regularization Method | en_US |
| dc.subject | 26A33 | en_US |
| dc.subject | 35B65 | en_US |
| dc.subject | 35R11 | en_US |
| dc.title | Recovering the Space Source Term for the Fractional-Diffusion Equation With Caputo-Fabrizio Derivative | en_US |
| dc.title | Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57204918973 | |
| gdc.author.scopusid | 57207580205 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57072750200 | |
| gdc.author.wosid | Long, Le/Gsd-8876-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Le, Huynh/E-6128-2019 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Le Nhat Huynh] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam; [Nguyen Hoang Luc; Le Dinh Long] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2021 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3165578345 | |
| gdc.identifier.wos | WOS:000616397000001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 2.6931877E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Inverse Problems in Mathematical Physics and Imaging | |
| gdc.oaire.keywords | Fractional diffusion equation | |
| gdc.oaire.keywords | A priori estimate | |
| gdc.oaire.keywords | Epistemology | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Term (time) | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Regularization (linguistics) | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Mathematical Physics | |
| gdc.oaire.keywords | Hadamard transform | |
| gdc.oaire.keywords | Singularity | |
| gdc.oaire.keywords | Time-Fractional Diffusion Equation | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Caputo–Fabrizio fractional derivative | |
| gdc.oaire.keywords | A priori and a posteriori | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | FOS: Philosophy, ethics and religion | |
| gdc.oaire.keywords | Fracture Mechanics Modeling and Simulation | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Philosophy | |
| gdc.oaire.keywords | Mechanics of Materials | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Inverse problem | |
| gdc.oaire.keywords | Source function | |
| gdc.oaire.keywords | Kernel (algebra) | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Well-posed problem | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Regularization method | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Caputo-Fabrizio fractional derivative | |
| gdc.oaire.keywords | fractional diffusion equation | |
| gdc.oaire.keywords | source function | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.keywords | Reaction-diffusion equations | |
| gdc.oaire.keywords | regularization method | |
| gdc.oaire.popularity | 5.380466E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.54520351 | |
| gdc.openalex.normalizedpercentile | 0.62 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 8 | |
| gdc.scopus.citedcount | 8 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
