Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Recovering the Space Source Term for the Fractional-Diffusion Equation With Caputo-Fabrizio Derivative

dc.contributor.author Nguyen Hoang Luc
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Le Dinh Long
dc.contributor.author Le Nhat Huynh
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-12-07T12:03:33Z
dc.date.accessioned 2025-09-18T12:09:25Z
dc.date.available 2022-12-07T12:03:33Z
dc.date.available 2025-09-18T12:09:25Z
dc.date.issued 2021
dc.description.abstract This article is devoted to the study of the source function for the Caputo-Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method. en_US
dc.identifier.citation Huynh, Le Nhat...et al. (2021). "Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative", Journal of Inequalities and Applications, Vol. 2021, No. 1. en_US
dc.identifier.doi 10.1186/s13660-021-02557-3
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-85100056573
dc.identifier.uri https://doi.org/10.1186/s13660-021-02557-3
dc.identifier.uri https://hdl.handle.net/123456789/11412
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Source Function en_US
dc.subject Fractional Diffusion Equation en_US
dc.subject Caputo-Fabrizio Fractional Derivative en_US
dc.subject Regularization Method en_US
dc.subject 26A33 en_US
dc.subject 35B65 en_US
dc.subject 35R11 en_US
dc.title Recovering the Space Source Term for the Fractional-Diffusion Equation With Caputo-Fabrizio Derivative en_US
dc.title Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57204918973
gdc.author.scopusid 57207580205
gdc.author.scopusid 7005872966
gdc.author.scopusid 57072750200
gdc.author.wosid Long, Le/Gsd-8876-2022
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Le, Huynh/E-6128-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Le Nhat Huynh] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam; [Nguyen Hoang Luc; Le Dinh Long] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2021 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3165578345
gdc.identifier.wos WOS:000616397000001
gdc.openalex.fwci 0.54520351
gdc.openalex.normalizedpercentile 0.65
gdc.opencitations.count 3
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.wos.citedcount 6
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files