The Hamilton Formalism With Fractional Derivatives
| dc.contributor.author | Nawafleh, Khaled I. | |
| dc.contributor.author | Hijjawi, Raed S. | |
| dc.contributor.author | Muslih, Sami I. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Rabei, Eqab M. | |
| dc.date.accessioned | 2016-04-06T12:13:05Z | |
| dc.date.accessioned | 2025-09-18T14:10:28Z | |
| dc.date.available | 2016-04-06T12:13:05Z | |
| dc.date.available | 2025-09-18T14:10:28Z | |
| dc.date.issued | 2007 | |
| dc.description.abstract | Recently the traditional calculus of variations has been extended to be applicable for systems containing fractional derivatives. In this paper the passage from the Lagrangian containing fractional derivatives to the Hamiltonian is achieved. The Hamilton's equations of motion are obtained in a similar manner to the usual mechanics. In addition, the classical fields with fractional derivatives are investigated using Hamiltonian formalism. Two discrete problems and one continuous are considered to demonstrate the application of the formalism, the results are obtained to be in exact agreement with Agrawal's formalism. (c) 2006 Elsevier Inc. All rights reserved. | en_US |
| dc.identifier.citation | Rabei, E.M...et al. (2007). The Hamilton formalism with fractional derivatives. Journal of Mathematical Analysis and Applications, 327(2), 891-897. http://dx.doi.org/10.1016/j.jmaa.2006.04.076 | en_US |
| dc.identifier.doi | 10.1016/j.jmaa.2006.04.076 | |
| dc.identifier.issn | 0022-247X | |
| dc.identifier.issn | 1096-0813 | |
| dc.identifier.scopus | 2-s2.0-33750972567 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2006.04.076 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13697 | |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press inc Elsevier Science | en_US |
| dc.relation.ispartof | Journal of Mathematical Analysis and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Derivatives | en_US |
| dc.subject | Lagrangian And Hamiltonian Formulation | en_US |
| dc.title | The Hamilton Formalism With Fractional Derivatives | en_US |
| dc.title | The Hamilton formalism with fractional derivatives | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 6602156175 | |
| gdc.author.scopusid | 6507296705 | |
| gdc.author.scopusid | 10243007300 | |
| gdc.author.scopusid | 7003657106 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Muslih, Sami/Aaf-4974-2020 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C3 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Mutah Univ, Dept Phys, Al Karak, Jordan; Jerash Private Univ, Dept Sci, Jerash, Jordan; Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel; Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey | en_US |
| gdc.description.endpage | 897 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 891 | en_US |
| gdc.description.volume | 327 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1970531720 | |
| gdc.identifier.wos | WOS:000242980500011 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 51.0 | |
| gdc.oaire.influence | 1.9389347E-8 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Hamilton's equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Lagrangian formulation | |
| gdc.oaire.keywords | Agrawal formalism | |
| gdc.oaire.popularity | 3.061468E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 8.48345513 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 159 | |
| gdc.plumx.crossrefcites | 132 | |
| gdc.plumx.mendeley | 19 | |
| gdc.plumx.scopuscites | 182 | |
| gdc.publishedmonth | 3 | |
| gdc.scopus.citedcount | 191 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 168 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
