Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Mathematical Sciences-aims

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, a type of complex algebraic differential equations (CADEs) is considered formulating by alpha[phi(z)phi ''(z) + (phi'(z))(2)] + a(m)phi(m)(z) + a(m-1)phi(m-1)(z) + ... + a(1)phi(z) + a(0) = 0. The conformal analysis (angle-preserving) of the CADEs is investigated. We present sufficient conditions to obtain analytic solutions of the CADEs. We show that these solutions are subordinated to analytic convex functions in terms of e(z). Moreover, we investigate the connection estimates (coefficient bounds) of CADEs by employing the majorization method. We achieve that the coefficients bound are optimized by Bernoulli numbers.

Description

Keywords

Analytic Function, Subordination And Superordination, Univalent Function, Open Unit Disk, Algebraic Differential Equations, Majorization Method

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ibrahim, Rabha W.; Baleanu, Dumitru (2020). "Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept", AIMS Mathematics, Vol. 6, No. 1, pp. 806-820.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

6

Issue

1

Start Page

806

End Page

820