Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept

dc.authorscopusid 16319225300
dc.authorscopusid 7005872966
dc.authorwosid Ibrahim, Rabha/D-3312-2017
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-05-13T11:48:37Z
dc.date.available 2022-05-13T11:48:37Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Ibrahim, Rabha W.] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description.abstract In this paper, a type of complex algebraic differential equations (CADEs) is considered formulating by alpha[phi(z)phi ''(z) + (phi'(z))(2)] + a(m)phi(m)(z) + a(m-1)phi(m-1)(z) + ... + a(1)phi(z) + a(0) = 0. The conformal analysis (angle-preserving) of the CADEs is investigated. We present sufficient conditions to obtain analytic solutions of the CADEs. We show that these solutions are subordinated to analytic convex functions in terms of e(z). Moreover, we investigate the connection estimates (coefficient bounds) of CADEs by employing the majorization method. We achieve that the coefficients bound are optimized by Bernoulli numbers. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ibrahim, Rabha W.; Baleanu, Dumitru (2020). "Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept", AIMS Mathematics, Vol. 6, No. 1, pp. 806-820. en_US
dc.identifier.doi 10.3934/math.2021049
dc.identifier.endpage 820 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85095955470
dc.identifier.scopusquality Q1
dc.identifier.startpage 806 en_US
dc.identifier.uri https://doi.org/10.3934/math.2021049
dc.identifier.volume 6 en_US
dc.identifier.wos WOS:000590361100049
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 6
dc.subject Analytic Function en_US
dc.subject Subordination And Superordination en_US
dc.subject Univalent Function en_US
dc.subject Open Unit Disk en_US
dc.subject Algebraic Differential Equations en_US
dc.subject Majorization Method en_US
dc.title Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept tr_TR
dc.title Geometric Behavior of a Class of Algebraic Differential Equations in a Complex Domain Using a Majorization Concept en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
425.28 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: