Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept
dc.authorscopusid | 16319225300 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Ibrahim, Rabha/D-3312-2017 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Ibrahim, Rabha W. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-05-13T11:48:37Z | |
dc.date.available | 2022-05-13T11:48:37Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ibrahim, Rabha W.] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description.abstract | In this paper, a type of complex algebraic differential equations (CADEs) is considered formulating by alpha[phi(z)phi ''(z) + (phi'(z))(2)] + a(m)phi(m)(z) + a(m-1)phi(m-1)(z) + ... + a(1)phi(z) + a(0) = 0. The conformal analysis (angle-preserving) of the CADEs is investigated. We present sufficient conditions to obtain analytic solutions of the CADEs. We show that these solutions are subordinated to analytic convex functions in terms of e(z). Moreover, we investigate the connection estimates (coefficient bounds) of CADEs by employing the majorization method. We achieve that the coefficients bound are optimized by Bernoulli numbers. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Ibrahim, Rabha W.; Baleanu, Dumitru (2020). "Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept", AIMS Mathematics, Vol. 6, No. 1, pp. 806-820. | en_US |
dc.identifier.doi | 10.3934/math.2021049 | |
dc.identifier.endpage | 820 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85095955470 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 806 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2021049 | |
dc.identifier.volume | 6 | en_US |
dc.identifier.wos | WOS:000590361100049 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 6 | |
dc.subject | Analytic Function | en_US |
dc.subject | Subordination And Superordination | en_US |
dc.subject | Univalent Function | en_US |
dc.subject | Open Unit Disk | en_US |
dc.subject | Algebraic Differential Equations | en_US |
dc.subject | Majorization Method | en_US |
dc.title | Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept | tr_TR |
dc.title | Geometric Behavior of a Class of Algebraic Differential Equations in a Complex Domain Using a Majorization Concept | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |