A New Type of Equation of Motion and Numerical Method for a Harmonic Oscillator With Left and Right Fractional Derivatives
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ullah, Malik Zaka | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2022-03-01T12:52:54Z | |
| dc.date.accessioned | 2025-09-18T16:07:17Z | |
| dc.date.available | 2022-03-01T12:52:54Z | |
| dc.date.available | 2025-09-18T16:07:17Z | |
| dc.date.issued | 2020 | |
| dc.description | Ullah, Malik Zaka/0000-0003-2944-0352 | en_US |
| dc.description.abstract | The aim of this research is to propose a new fractional Euler-Lagrange equation for a harmonic oscillator. The theoretical analysis is given in order to derive the equation of motion in a fractional framework. The new equation has a complicated structure involving the left and right fractional derivatives of Caputo-Fabrizio type, so a new numerical method is developed in order to solve the above-mentioned equation effectively. As a result, we can see different asymptotic behaviors according to the flexibility provided by the use of the fractional calculus approach, a fact which may be invisible when we use the classical Lagrangian technique. This capability helps us to better understand the complex dynamics associated with natural phenomena. | en_US |
| dc.description.publishedMonth | 12 | |
| dc.description.sponsorship | Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah [:221-130-1441] | en_US |
| dc.description.sponsorship | This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G:221-130-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support. | en_US |
| dc.identifier.citation | Ullah, Malik Zaka; Baleanu, Dumitru (2020). "A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives", Chinese Journal of Physics, Vol. 68, pp. 712-722. | en_US |
| dc.identifier.doi | 10.1016/j.cjph.2020.10.012 | |
| dc.identifier.issn | 0577-9073 | |
| dc.identifier.scopus | 2-s2.0-85095412269 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cjph.2020.10.012 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14724 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Euler-Lagrange Equation | en_US |
| dc.subject | Caputo-Fabrizio Derivative | en_US |
| dc.subject | Harmonic Oscillator | en_US |
| dc.subject | Position-Dependent Mass | en_US |
| dc.title | A New Type of Equation of Motion and Numerical Method for a Harmonic Oscillator With Left and Right Fractional Derivatives | en_US |
| dc.title | A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ullah, Malik Zaka/0000-0003-2944-0352 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 55869614600 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ullah, Malik Zaka/H-2068-2013 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ullah, Malik Zaka] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania | en_US |
| gdc.description.endpage | 722 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 712 | en_US |
| gdc.description.volume | 68 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3095006905 | |
| gdc.identifier.wos | WOS:000599451300012 | |
| gdc.openalex.fwci | 0.14239051 | |
| gdc.openalex.normalizedpercentile | 0.54 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |