Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods

dc.authorscopusid6507776586
dc.authorscopusid56875440000
dc.authorwosidMaras, Hakan/G-1236-2017
dc.contributor.authorUreten, Kemal
dc.contributor.authorMaraş, Hadi Hakan
dc.contributor.authorMaras, Hadi Hakan
dc.contributor.authorID34410tr_TR
dc.date.accessioned2024-02-05T12:49:12Z
dc.date.available2024-02-05T12:49:12Z
dc.date.issued2022
dc.departmentÇankaya Universityen_US
dc.department-temp[Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, TR-71450 Kirikkale, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkeyen_US
dc.description.abstractRheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis.en_US
dc.description.publishedMonth4
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationÜreten, K.; Maraş, H.H. (2022). "Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods", Journal of Digital Imaging, Vol.35, No.2, pp.193-199.en_US
dc.identifier.doi10.1007/s10278-021-00564-w
dc.identifier.endpage199en_US
dc.identifier.issn0897-1889
dc.identifier.issn1618-727X
dc.identifier.issue2en_US
dc.identifier.pmid35018539
dc.identifier.scopus2-s2.0-85122651306
dc.identifier.scopusqualityQ1
dc.identifier.startpage193en_US
dc.identifier.urihttps://doi.org/10.1007/s10278-021-00564-w
dc.identifier.volume35en_US
dc.identifier.wosWOS:000741249100004
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRheumatoid Arthritisen_US
dc.subjectOsteoarthritisen_US
dc.subjectDeep Learningen_US
dc.subjectObject Detectionen_US
dc.subjectTransfer Learningen_US
dc.subjectData Augmentationen_US
dc.titleAutomated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methodstr_TR
dc.titleAutomated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: