Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods

dc.authorscopusid 6507776586
dc.authorscopusid 56875440000
dc.authorwosid Maras, Hakan/G-1236-2017
dc.contributor.author Ureten, Kemal
dc.contributor.author Maras, Hadi Hakan
dc.contributor.authorID 34410 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2024-02-05T12:49:12Z
dc.date.available 2024-02-05T12:49:12Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, TR-71450 Kirikkale, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkey en_US
dc.description.abstract Rheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Üreten, K.; Maraş, H.H. (2022). "Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods", Journal of Digital Imaging, Vol.35, No.2, pp.193-199. en_US
dc.identifier.doi 10.1007/s10278-021-00564-w
dc.identifier.endpage 199 en_US
dc.identifier.issn 0897-1889
dc.identifier.issn 1618-727X
dc.identifier.issue 2 en_US
dc.identifier.pmid 35018539
dc.identifier.scopus 2-s2.0-85122651306
dc.identifier.scopusquality Q1
dc.identifier.startpage 193 en_US
dc.identifier.uri https://doi.org/10.1007/s10278-021-00564-w
dc.identifier.volume 35 en_US
dc.identifier.wos WOS:000741249100004
dc.identifier.wosquality Q1
dc.institutionauthor Maraş, Hadi Hakan
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 43
dc.subject Rheumatoid Arthritis en_US
dc.subject Osteoarthritis en_US
dc.subject Deep Learning en_US
dc.subject Object Detection en_US
dc.subject Transfer Learning en_US
dc.subject Data Augmentation en_US
dc.title Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods tr_TR
dc.title Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methods en_US
dc.type Article en_US
dc.wos.citedbyCount 32
dspace.entity.type Publication
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: