A Numerical Method Based on the Piecewise Jacobi Functions for Distributed-Order Fractional Schrodinger Equation
| dc.contributor.author | Heydari, M. H. | |
| dc.contributor.author | Razzaghi, M. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2023-11-22T12:27:43Z | |
| dc.date.accessioned | 2025-09-18T12:05:52Z | |
| dc.date.available | 2023-11-22T12:27:43Z | |
| dc.date.available | 2025-09-18T12:05:52Z | |
| dc.date.issued | 2023 | |
| dc.description | Heydari, Mohammad Hossein/0000-0001-6764-4394 | en_US |
| dc.description.abstract | In this work, the distributed-order time fractional version of the Schrodinger problem is defined by replacing the first order derivative in the classical problem with this kind of fractional derivative. The Caputo fractional derivative is employed in defining the used distributed fractional derivative. The orthonormal piecewise Jacobi functions as a novel family of basis functions are defined. A new formulation for the Caputo fractional derivative of these functions is derived. A numerical method based upon these piecewise functions together with the classical Jacobi polynomials and the Gauss- Legendre quadrature rule is constructed to solve the introduced problem. This method converts the mentioned problem into an algebraic problem that can easily be solved. The accuracy of the method is examined numerically by solving some examples.(c) 2022 Elsevier B.V. All rights reserved. | en_US |
| dc.description.publishedMonth | 1 | |
| dc.identifier.citation | Heydari, M. H.; Razzaghi, M.; Baleanu, D. (2023). "A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrodinger equation", Communications In Nonlinear Science And Numerical Simulation, Vol.116. | en_US |
| dc.identifier.doi | 10.1016/j.cnsns.2022.106873 | |
| dc.identifier.issn | 1007-5704 | |
| dc.identifier.issn | 1878-7274 | |
| dc.identifier.scopus | 2-s2.0-85138171490 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2022.106873 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/10754 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Jacobi Polynomials | en_US |
| dc.subject | Piecewise Jacobi Functions | en_US |
| dc.subject | Distributed-Order Fractional Derivative | en_US |
| dc.subject | Schr?Dinger Equation | en_US |
| dc.title | A Numerical Method Based on the Piecewise Jacobi Functions for Distributed-Order Fractional Schrodinger Equation | en_US |
| dc.title | A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrodinger equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Heydari, Mohammad Hossein/0000-0001-6764-4394 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57209064354 | |
| gdc.author.scopusid | 7006078872 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Heydari, Mohammad Hossein/Aac-9343-2021 | |
| gdc.author.wosid | Razzaghi, Mohsen/Aaq-5376-2021 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Heydari, M. H.] Shiraz Univ Technol, Dept Math, Shiraz, Iran; [Razzaghi, M.] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkiye; [Baleanu, D.] Inst Space Sci, R-76900 Bucharest, Romania; [Baleanu, D.] Lebanese Amer Univ, Beirut, Lebanon | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 116 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4295021230 | |
| gdc.identifier.wos | WOS:000869756200007 | |
| gdc.openalex.fwci | 5.75326757 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 24 | |
| gdc.plumx.crossrefcites | 14 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 33 | |
| gdc.scopus.citedcount | 33 | |
| gdc.wos.citedcount | 37 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |