Generalized Quantum Integro-Differential Fractional Operator With Application of 2d-Shallow Water Equation in a Complex Domain
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.date.accessioned | 2024-04-03T13:33:20Z | |
| dc.date.accessioned | 2025-09-18T12:48:32Z | |
| dc.date.available | 2024-04-03T13:33:20Z | |
| dc.date.available | 2025-09-18T12:48:32Z | |
| dc.date.issued | 2021 | |
| dc.description | Ibrahim, Rabha W./0000-0001-9341-025X | en_US |
| dc.description.abstract | In this paper, we aim to generalize a fractional integro-differential operator in the open unit disk utilizing Jackson calculus (quantum calculus or q-calculus). Next, by consuming the generalized operator to define a formula of normalized analytic functions, we present a set of integral inequalities using the concepts of subordination and superordination. In addition, as an application, we determine the maximum and minimum solutions of the extended fractional 2D-shallow water equation in a complex domain. | en_US |
| dc.identifier.citation | Rabha, W. Ibrahim; Baleanu, D. (2021). "Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain", Axioms, Vol.10, No.342, pp. 1-12. | en_US |
| dc.identifier.doi | 10.3390/axioms10040342 | |
| dc.identifier.issn | 2075-1680 | |
| dc.identifier.scopus | 2-s2.0-85121616501 | |
| dc.identifier.uri | https://doi.org/10.3390/axioms10040342 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12092 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Axioms | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Quantum Calculus | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Analytic Function | en_US |
| dc.subject | Subordination | en_US |
| dc.subject | Univalent Function | en_US |
| dc.subject | Open Unit Disk | en_US |
| dc.subject | Differential Operator | en_US |
| dc.subject | Convolution Operator | en_US |
| dc.title | Generalized Quantum Integro-Differential Fractional Operator With Application of 2d-Shallow Water Equation in a Complex Domain | en_US |
| dc.title | Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ibrahim, Rabha W./0000-0001-9341-025X | |
| gdc.author.scopusid | 16319225300 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ibrahim, Rabha W./D-3312-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ibrahim, Rabha W.] Inst Elect & Elect Engn IEEE, Kuala Lumpur 59200, Malaysia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest R76900, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 342 | |
| gdc.description.volume | 10 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4200170185 | |
| gdc.identifier.wos | WOS:000735301900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | subordination | |
| gdc.oaire.keywords | fractional calculus | |
| gdc.oaire.keywords | quantum calculus | |
| gdc.oaire.keywords | univalent function | |
| gdc.oaire.keywords | quantum calculus; fractional calculus; analytic function; subordination; univalent function; open unit disk; differential operator; convolution operator | |
| gdc.oaire.keywords | analytic function | |
| gdc.oaire.keywords | open unit disk | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 1.5483943E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.25 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
