Radial Solutions of a Nonlinear K-Hessian System Involving a Nonlinear Operator
| dc.contributor.author | Yang, Zedong | |
| dc.contributor.author | Zhang, Lihong | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Wang, Guotao | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-12-07T12:02:20Z | |
| dc.date.accessioned | 2025-09-18T14:09:08Z | |
| dc.date.available | 2022-12-07T12:02:20Z | |
| dc.date.available | 2025-09-18T14:09:08Z | |
| dc.date.issued | 2020 | |
| dc.description | Zhang, Lihong/0000-0002-3144-2237 | en_US |
| dc.description.abstract | In this paper, we consider the following nonlinear k-Hessian system {G(S-k(1/k)(lambda(D-2 z(1))))S-k(1/k)(lambda(D-2 z(1))) = b(|x|)phi(z(1), z(2)), x is an element of R-N, G(S-k(1/k)(lambda(D(2)z(2))))S-k(1/k)(lambda(D(2)z(2)) = h(|x|)psi(z(1), z(2)), x is an element of R-N, where G is a nonlinear operator. This paper first proves the existence of the entire positive bounded radial solutions, and secondly gives the existence and non-existence conditions of the entire positive blow-up radial solutions. Finally, we give some examples to illustrate our results. (c) 2020 Elsevier B.V. All rights reserved. | en_US |
| dc.description.publishedMonth | 12 | |
| dc.description.sponsorship | NSFC [11501342]; NSF of Shanxi, China [201701D221007]; Graduate Innovation Program of Shanxi, China [2019SY301]; STIP [201802068, 201802069] | en_US |
| dc.description.sponsorship | This work is supported by NSFC (No.11501342), NSF of Shanxi, China (No.201701D221007), the Graduate Innovation Program of Shanxi, China (No.2019SY301) and STIP (Nos.201802068 and 201802069). All authors equally contributed this manuscript. | en_US |
| dc.identifier.citation | Wang, Guotao...et al. (2020). "Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator", Communications in Nonlinear Science and Numerical Simulation, Vol. 91. | en_US |
| dc.identifier.doi | 10.1016/j.cnsns.2020.105396 | |
| dc.identifier.issn | 1007-5704 | |
| dc.identifier.issn | 1878-7274 | |
| dc.identifier.scopus | 2-s2.0-85087326581 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2020.105396 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13286 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | K-Hessian System | en_US |
| dc.subject | Nonlinear Operator | en_US |
| dc.subject | Positive Radial Solution | en_US |
| dc.subject | Blow-Up | en_US |
| dc.subject | Monotone Iterative Method | en_US |
| dc.title | Radial Solutions of a Nonlinear K-Hessian System Involving a Nonlinear Operator | en_US |
| dc.title | Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Zhang, Lihong/0000-0002-3144-2237 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 55622789600 | |
| gdc.author.scopusid | 57217524250 | |
| gdc.author.scopusid | 55709293000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Wang, Guotao/Aar-1198-2020 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Wang, Guotao; Yang, Zedong; Zhang, Lihong] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 91 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3037429557 | |
| gdc.identifier.wos | WOS:000573056300005 | |
| gdc.openalex.fwci | 7.17760808 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 37 | |
| gdc.plumx.crossrefcites | 38 | |
| gdc.plumx.scopuscites | 41 | |
| gdc.scopus.citedcount | 41 | |
| gdc.wos.citedcount | 38 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |