Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Recursive Approximations for Variable-Order Fractional Operators With Applications

dc.contributor.author Doha, Eid H.
dc.contributor.author Taha, Taha M.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Zaky, Mahmoud A.
dc.date.accessioned 2019-12-25T11:39:36Z
dc.date.accessioned 2025-09-18T12:09:53Z
dc.date.available 2019-12-25T11:39:36Z
dc.date.available 2025-09-18T12:09:53Z
dc.date.issued 2018
dc.description Zaky, Mahmoud/0000-0002-3376-7238 en_US
dc.description.abstract To broaden the range of applicability of variable-order fractional differential models, reliable numerical approaches are needed to solve the model equation. In this paper, we develop Laguerre spectral collocation methods for solving variable-order fractional initial value problems on the half line. Specifically, we derive three-term recurrence relations to efficiently calculate the variable-order fractional integrals and derivatives of the modified generalized Laguerre polynomials, which lead to the corresponding fractional differentiation matrices that will be used to construct the collocation methods. Comparison with other existing methods shows the superior accuracy of the proposed spectral collocation methods. en_US
dc.identifier.citation Zaky, Mahmoud A...et al. (2018). "New Recursive Approximations for Variable-Order Fractional Operators with Applications", Mathematical Modelling and Analysis, Vol. 23, No. 2, pp. 227-239. en_US
dc.identifier.doi 10.3846/mma.2018.015
dc.identifier.issn 1392-6292
dc.identifier.issn 1648-3510
dc.identifier.scopus 2-s2.0-85046997625
dc.identifier.uri https://doi.org/10.3846/mma.2018.015
dc.identifier.uri https://hdl.handle.net/20.500.12416/11549
dc.language.iso en en_US
dc.publisher Vilnius Gediminas Tech Univ en_US
dc.relation.ispartof Mathematical Modelling and Analysis
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Spectral Collocation Methods en_US
dc.subject Modified Generalized Laguerre Polynomials en_US
dc.subject Variable Order Fractional Integrals And Derivatives en_US
dc.subject Bagley-Torvik Equation en_US
dc.title New Recursive Approximations for Variable-Order Fractional Operators With Applications en_US
dc.title New Recursive Approximations for Variable-Order Fractional Operators with Applications tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Zaky, Mahmoud/0000-0002-3376-7238
gdc.author.scopusid 56448517900
gdc.author.scopusid 6602467804
gdc.author.scopusid 55579185500
gdc.author.scopusid 7005872966
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Zaky, Mahmoud/B-2797-2015
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Zaky, Mahmoud A.] Natl Res Ctr, Dept Appl Math, Giza 12622, Egypt; [Doha, Eid H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Taha, Taha M.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 239 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 227 en_US
gdc.description.volume 23 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2964100222
gdc.identifier.wos WOS:000439208500005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 19.0
gdc.oaire.influence 3.5527628E-9
gdc.oaire.isgreen true
gdc.oaire.keywords variable order fractional integrals and derivatives
gdc.oaire.keywords Economics
gdc.oaire.keywords Collocation (remote sensing)
gdc.oaire.keywords Matrix Valued Polynomials
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Orthogonal Polynomials
gdc.oaire.keywords Differential equation
gdc.oaire.keywords Orthogonal collocation
gdc.oaire.keywords Machine learning
gdc.oaire.keywords modified generalized Laguerre polynomials
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Laguerre polynomials
gdc.oaire.keywords Mathematics - Numerical Analysis
gdc.oaire.keywords Spectral method
gdc.oaire.keywords Variable (mathematics)
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Order (exchange)
gdc.oaire.keywords Collocation method
gdc.oaire.keywords 42C05, 65D99, 35R11, 65N35
gdc.oaire.keywords Bagley-Torvik equation
gdc.oaire.keywords Time-Fractional Diffusion Equation
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Fractional calculus
gdc.oaire.keywords spectral collocation methods
gdc.oaire.keywords Statistical and Nonlinear Physics
gdc.oaire.keywords Numerical Analysis (math.NA)
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Computer science
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Quadrature Methods
gdc.oaire.keywords Physics and Astronomy
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Fractional Calculus
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Ordinary differential equation
gdc.oaire.keywords Finance
gdc.oaire.keywords Rogue Waves in Nonlinear Systems
gdc.oaire.keywords modified generalized Laguerre polynomials
gdc.oaire.keywords variable order fractional integrals
gdc.oaire.keywords Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords Numerical approximation and computational geometry (primarily algorithms)
gdc.oaire.keywords derivatives
gdc.oaire.keywords Spectral, collocation and related methods for boundary value problems involving PDEs
gdc.oaire.popularity 8.064647E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 2.86860708
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 24
gdc.plumx.crossrefcites 19
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 27
gdc.scopus.citedcount 27
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 23
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files