Mild and Strong Solutions for a Fractional Nonlinear Neumann Boundary Value Problem
| dc.contributor.author | Herzallah, Mohamed A. E. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | El-Shahed, Moustafa | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | Matematik | |
| dc.date.accessioned | 2025-09-23T12:47:53Z | |
| dc.date.available | 2025-09-23T12:47:53Z | |
| dc.date.issued | 2013 | |
| dc.description | Herzallah, Mohamed/0000-0003-3514-3709; El-Shahed, Moustafa/0000-0001-9508-3192 | en_US |
| dc.description.abstract | In this paper, we investigated the following fractional Neumann boundary value problem D-C(0)alpha+u(t) - lambda u(t) = f (t, u(t)), u'(0) = u'(1) = 0, 1 < alpha < 2, lambda not equal 0, where D-C(a+)alpha is the fractional Caputo derivative. We proved the existence of at least one mild solution and we determined when this solution is unique for suitable assumptions on the function f | en_US |
| dc.identifier.citation | Herzallah, Mohamed A. E.; El-Shahed, Moustafa; Baleanu, Dumitru (2013). "Mild and strong solutions for a fractional nonlinear neumann boundary value problem", Journal of Computational Analysis and Applications, Vol. 15, No. 2, pp. 341-352. | en_US |
| dc.identifier.issn | 1521-1398 | |
| dc.identifier.issn | 1572-9206 | |
| dc.identifier.scopus | 2-s2.0-84876855698 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15213 | |
| dc.language.iso | en | en_US |
| dc.publisher | Eudoxus Press, Llc | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Caputo Derivative | en_US |
| dc.subject | Boundary Value Problem | en_US |
| dc.subject | Neumann Conditions | en_US |
| dc.subject | Schauffer Fixed Point Theorem | en_US |
| dc.title | Mild and Strong Solutions for a Fractional Nonlinear Neumann Boundary Value Problem | en_US |
| dc.title | Mild and strong solutions for a fractional nonlinear neumann boundary value problem | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Herzallah, Mohamed/0000-0003-3514-3709 | |
| gdc.author.id | El-Shahed, Moustafa/0000-0001-9508-3192 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 6505909904 | |
| gdc.author.scopusid | 6701674037 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | El-Shahed, Moustafa/Jce-0393-2023 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Herzallah, Mohamed A. E.] Zagazig Univ, Fac Sci, Zagazig, Egypt; [Herzallah, Mohamed A. E.] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia; [El-Shahed, Moustafa] Coll Educ, Qassim Unaizah, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania | en_US |
| gdc.description.endpage | 352 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 341 | en_US |
| gdc.description.volume | 15 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.wos | WOS:000315700000015 | |
| gdc.scopus.citedcount | 5 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |