Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

An Intelligent System for Detecting Mediterranean Fruit Fly [Medfly; Ceratitis Capitata (Wiedemann)]

dc.contributor.author Eyyuboglu, Halil Tanyer
dc.contributor.author Sari, Filiz
dc.contributor.author Uzun, Yusuf
dc.contributor.author Tolun, Mehmet Resit
dc.contributor.other 06.02. Elektronik ve Haberleşme Mühendisliği
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-02-28T12:17:00Z
dc.date.accessioned 2025-09-18T15:43:56Z
dc.date.available 2024-02-28T12:17:00Z
dc.date.available 2025-09-18T15:43:56Z
dc.date.issued 2022
dc.description Sari, Filiz/0000-0001-8462-175X; Tolun, Mehmet Resit/0000-0002-8478-7220 en_US
dc.description.abstract Nowadays, the most critical agriculture-related problem is the harm caused to fruit, vegetable, nut, and flower crops by harmful pests, particularly the Mediterranean fruit fly, Ceratitis capitata, named Medfly. Medfly's existence in agricultural fields must be monitored systematically for effective combat against it. Special traps are utilised in the field to catch Medflies which will reveal their presence and applying pesticides at the right time will help reduce their population. A technologically supported automated remote monitoring system should eliminate frequent site visits as a more economical solution. This paper develops a deep learning system that can detect Medfly images on a picture and count their numbers. A particular trap equipped with an integrated camera that can take photos of the sticky band where Medflies are caught daily is utilised. Obtained pictures are then transmitted by an electronic circuit containing a SIM card to the central server where the object detection algorithm runs. This study employs a faster region-based convolutional neural network (Faster R-CNN) model in identifying trapped Medflies. When Medflies or other insects stick on the trap's sticky band, they spend extraordinary effort trying to release themselves in a panic until they die. Therefore, their shape is badly distorted as their bodies, wings, and legs are buckled. The challenge is that the deep learning system should detect these Medflies of distorted shape with high accuracy. Therefore, it is crucial to utilise pictures containing trapped Medfly images with distorted shapes for training and validation. In this paper, the success rate in identifying Medflies when other insects are also present is approximately 94%, achieved by the deep learning system training process, owing to the considerable amount of purpose-specific photographic data. This rate may be seen as quite favourable when compared to the success rates provided in the literature. en_US
dc.description.publishedMonth 9
dc.identifier.citation Uzun, Yusuf;...et.al. (2022). "An intelligent system for detecting Mediterranean fruit fly", Journal of Agricultural Engineering, Vol.53, No.3. en_US
dc.identifier.doi 10.4081/jae.2022.1381
dc.identifier.issn 2239-6268
dc.identifier.issn 1974-7071
dc.identifier.scopus 2-s2.0-85139260230
dc.identifier.uri https://doi.org/10.4081/jae.2022.1381
dc.identifier.uri https://hdl.handle.net/20.500.12416/14072
dc.language.iso en en_US
dc.publisher Pagepress Publ en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Automatic Pest Monitoring en_US
dc.subject Pesticide Optimisation In Agriculture en_US
dc.subject Deep Learning en_US
dc.subject Faster R-Cnn en_US
dc.subject E-Trap en_US
dc.subject Tight Against Mediterranean Fruit Fly en_US
dc.title An Intelligent System for Detecting Mediterranean Fruit Fly [Medfly; Ceratitis Capitata (Wiedemann)] en_US
dc.title An intelligent system for detecting Mediterranean fruit fly tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sari, Filiz/0000-0001-8462-175X
gdc.author.id Tolun, Mehmet Resit/0000-0002-8478-7220
gdc.author.institutional Eyyuboğlu, Halil Tanyer
gdc.author.institutional Tolun, Mehmet Reşit
gdc.author.scopusid 57915213500
gdc.author.scopusid 6603446979
gdc.author.scopusid 35614168400
gdc.author.scopusid 49361959300
gdc.author.wosid Sari, Filiz/Abd-9464-2020
gdc.author.wosid Uzun, Yusuf/Aag-4638-2019
gdc.author.wosid Baykal, Yahya/Aag-5082-2020
gdc.author.wosid Tolun, Mehmet Resit/Kcj-5958-2024
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Uzun, Yusuf] Aksaray Univ, Grad Sch Nat & Appl Sci, TR-68100 Aksaray, Turkey; [Tolun, Mehmet Resit] Cankaya Univ, Dept Software Engn, Ankara, Turkey; [Eyyuboglu, Halil Tanyer] Cankiri Karatekin Univ, Dept Elect & Elect Engn, Cankiri, Turkey; [Sari, Filiz] Aksaray Univ, Dept Elect & Elect Engn, Aksaray, Turkey en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 53 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4290459021
gdc.identifier.wos WOS:000854997600006
gdc.openalex.fwci 1.42741935
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 2
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 2
relation.isAuthorOfPublication 71977731-6d7b-42a5-81b1-f2681bf655b6
relation.isAuthorOfPublication ee2f4db5-47a7-4796-a56a-611dc571a8ef
relation.isAuthorOfPublication.latestForDiscovery 71977731-6d7b-42a5-81b1-f2681bf655b6
relation.isOrgUnitOfPublication 3f3f4ac0-1357-4a67-a7c4-465451ea38db
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 3f3f4ac0-1357-4a67-a7c4-465451ea38db

Files