Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Damage Detection in Aircraft Engine Borescope Inspection Using Deep Learning

dc.contributor.author Uzun, I.
dc.contributor.author Tolun, M.R.
dc.contributor.author Sari, F.
dc.contributor.author Alpaslan, F.N.
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-08-05T21:49:50Z
dc.date.available 2025-08-05T21:49:50Z
dc.date.issued 2025
dc.description.abstract Aircraft engine inspection is a key pillar of aviation safety as it helps to maintain adequate performance standards to ensure engine airworthiness. In addition, it is also vital for asset value retention. Borescope inspection is currently the most widely used visual inspection method for aircraft engines. However, borescope inspection is a time-consuming, subjective, and complex process that heavily depends on the experience and attention level of the inspector. Moreover, the cost savings of airlines and the maintenance, repair, and overhaul (MRO) centers expose pressure and workload on inspectors. These factors make an automated system to support damage detection during borescope inspection necessary in order to mitigate potential risks. In this paper, we propose a deep learning-based automated damage detection framework that employs aircraft engine borescope inspection images. Faster R-CNN-based deep learning model with Inception v2 feature extractor is utilized for the present architecture. Due to the limited number of images, data augmentation and other overfitting methods are also employed. The framework supports crack, burn, nick, and dent damage types across all modules of turbofan engines. It is trained and validated with moderate to complex borescope images obtained from the field. The framework achieves 92.64% accuracy for crack, 92.05% for nick or dent, and 81.14% for burn damage classes, with an overall 88.61% average accuracy. © The Author(s) 2025. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK en_US
dc.identifier.doi 10.1007/s00521-025-11443-8
dc.identifier.issn 0941-0643
dc.identifier.scopus 2-s2.0-105009914775
dc.identifier.uri https://doi.org/10.1007/s00521-025-11443-8
dc.identifier.uri https://hdl.handle.net/20.500.12416/10313
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Neural Computing and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Aircraft Engine en_US
dc.subject Borescope Inspection en_US
dc.subject Damage Detection en_US
dc.subject Deep Learning en_US
dc.subject Defect Detection en_US
dc.title Damage Detection in Aircraft Engine Borescope Inspection Using Deep Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Tolun, Mehmet Reşit
gdc.author.scopusid 58313894500
gdc.author.scopusid 6603446979
gdc.author.scopusid 49361959300
gdc.author.scopusid 6701519251
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Uzun I.] Department of Electrical Electronics and Computer Engineering, Aksaray University, Aksaray, Turkey; [Tolun M.R.] Department of Software Engineering, Cankaya University, Ankara, Turkey; [Sari F.] Department of Electrical and Electronics, Aksaray University, Aksaray, Turkey; [Alpaslan F.N.] Department of Computer Engineering, Middle East Technical University, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.wosquality Q2
gdc.identifier.openalex W4412077207
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication ee2f4db5-47a7-4796-a56a-611dc571a8ef
relation.isAuthorOfPublication.latestForDiscovery ee2f4db5-47a7-4796-a56a-611dc571a8ef
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files