Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations
| dc.contributor.author | Wu, Guo-Cheng | |
| dc.contributor.author | Zeng, Sheng-Da | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.date.accessioned | 2020-03-05T08:11:33Z | |
| dc.date.accessioned | 2025-09-18T13:26:10Z | |
| dc.date.available | 2020-03-05T08:11:33Z | |
| dc.date.available | 2025-09-18T13:26:10Z | |
| dc.date.issued | 2017 | |
| dc.description | Wu, Guo-Cheng/0000-0002-1946-6770; Zeng, Shengda/0000-0003-1818-842X | en_US |
| dc.description.abstract | This paper investigates chaotic behavior and stability of fractional differential equations within a new generalized Caputo derivative. A semi-analytical method is proposed based on Adomian polynomials and a fractional Taylor series. Furthermore, chaotic behavior of a fractional Lorenz equation are numerically discussed. Since the fractional derivative includes two fractional parameters, chaos becomes more complicated than the one in Caputo fractional differential equations. Finally, Lyapunov stability is defined for the generalized fractional system. A sufficient condition of asymptotic stability is given and numerical results support the theoretical analysis. (C) Elsevier Ltd. All rights reserved. | en_US |
| dc.description.sponsorship | China Postdoctoral Science Foundation [2016M602632]; Seed Funds for Major Science and Technology Innovation Projects of Sichuan Provincial Education Department [14CZ0026] | en_US |
| dc.description.sponsorship | The study was financially supported by the China Postdoctoral Science Foundation (Grant No. 2016M602632) and the Seed Funds for Major Science and Technology Innovation Projects of Sichuan Provincial Education Department (Grant No. 14CZ0026). | en_US |
| dc.identifier.citation | Baleanu, Dumitru; Wu, Guo-Cheng; Zeng, Sheng-Da, "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations", Chaos Solitons&Fractals, Vol.102, pp.99-105, (2017). | en_US |
| dc.identifier.doi | 10.1016/j.chaos.2017.02.007 | |
| dc.identifier.issn | 0960-0779 | |
| dc.identifier.issn | 1873-2887 | |
| dc.identifier.scopus | 2-s2.0-85015297340 | |
| dc.identifier.uri | https://doi.org/10.1016/j.chaos.2017.02.007 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12530 | |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon-elsevier Science Ltd | en_US |
| dc.relation.ispartof | Chaos, Solitons & Fractals | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Generalized Caputo Derivative | en_US |
| dc.subject | Lyapunov Direct Method | en_US |
| dc.subject | Asymptotic Stability | en_US |
| dc.subject | Chaos | en_US |
| dc.subject | Adomian Decomposition Method | en_US |
| dc.subject | Numerical Solutions | en_US |
| dc.title | Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations | en_US |
| dc.title | Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Wu, Guo-Cheng/0000-0002-1946-6770 | |
| gdc.author.id | Zeng, Shengda/0000-0003-1818-842X | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 23390775700 | |
| gdc.author.scopusid | 55982308000 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Wu, Guo-Cheng/T-9088-2017 | |
| gdc.author.wosid | Zeng, Shengda/Abm-7231-2022 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C3 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Wu, Guo-Cheng; Zeng, Sheng-Da] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sicuan Prov, Neijiang 641100, Sichuan, Peoples R China | en_US |
| gdc.description.endpage | 105 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 99 | en_US |
| gdc.description.volume | 102 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2596712155 | |
| gdc.identifier.wos | WOS:000406389600010 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 73.0 | |
| gdc.oaire.influence | 1.5618497E-8 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Qualitative investigation and simulation of models involving functional-differential equations | |
| gdc.oaire.keywords | asymptotic stability | |
| gdc.oaire.keywords | generalized Caputo derivative | |
| gdc.oaire.keywords | chaos | |
| gdc.oaire.keywords | Complex (chaotic) behavior of solutions to functional-differential equations | |
| gdc.oaire.keywords | Simulation of dynamical systems | |
| gdc.oaire.keywords | Adomian decomposition method | |
| gdc.oaire.keywords | numerical solutions | |
| gdc.oaire.keywords | Asymptotic properties of solutions to ordinary differential equations | |
| gdc.oaire.keywords | Lyapunov direct method | |
| gdc.oaire.keywords | Functional-differential equations with fractional derivatives | |
| gdc.oaire.popularity | 1.3419113E-7 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 13.56936354 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 194 | |
| gdc.plumx.crossrefcites | 117 | |
| gdc.plumx.mendeley | 28 | |
| gdc.plumx.scopuscites | 240 | |
| gdc.publishedmonth | 9 | |
| gdc.scopus.citedcount | 240 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 208 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
