Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Solving the Fractional Order Bloch Equation

dc.contributor.author Feng, Xu
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Magin, Richard
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2016-06-06T08:53:34Z
dc.date.accessioned 2025-09-18T16:08:19Z
dc.date.available 2016-06-06T08:53:34Z
dc.date.available 2025-09-18T16:08:19Z
dc.date.issued 2009
dc.description.abstract Nuclear magnetic resonance (NMR) is a physical phenomenon widely used in chemistry, medicine, and engineering to study complex materials. NMR is governed by the Bloch equation, which relates a macroscopic model of magnetization to applied radjofrequency, gradient and static magnetic fields. Simple models of materials are well described by the classical first order dynamics of precession and relaxation inherent in the vector form of the Bloch equation. Fractional order generalization of the Bloch equation presents an opportunity to extend its use to describe a wider range of experimental situations involving heterogeneous, porous, or composite materials. Here we describe the generalization of the Bloch equation in terms of Caputo fractional derivatives of order alpha (0 < alpha < 1) for a single spin system in a static magnetic field at resonance. The results are expressed in terms of the Mittag-Leffler function-a generalized exponential function that converges to the classical case when alpha = 1. (C) 2008 Wiley Periodicals, Inc. Concepts Magn Reson Part A 34A: 16-23, 2009. en_US
dc.description.publishedMonth 1
dc.identifier.citation Magin, R., Feng, X., Baleanu, D. (2009). Solving the Fractional Order Bloch Equation. Concepts In Magnetic Resonance Part A, 34/A(1), 16-23. http://dx.doi.org/10.1002/cmr.a.20129 en_US
dc.identifier.doi 10.1002/cmr.a.20129
dc.identifier.issn 1546-6086
dc.identifier.issn 1552-5023
dc.identifier.scopus 2-s2.0-59649085150
dc.identifier.uri https://doi.org/10.1002/cmr.a.20129
dc.identifier.uri https://hdl.handle.net/20.500.12416/15028
dc.language.iso en en_US
dc.publisher Wiley-hindawi en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bloch Equation en_US
dc.subject Fractional Derivative en_US
dc.subject Nuclear Magnetic Resonance en_US
dc.subject Magnetization en_US
dc.title Solving the Fractional Order Bloch Equation en_US
dc.title Solving the Fractional Order Bloch Equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005342618
gdc.author.scopusid 26026834400
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Magin, Richard; Feng, Xu] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania en_US
gdc.description.endpage 23 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 16 en_US
gdc.description.volume 34A en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W2051182120
gdc.identifier.wos WOS:000263015300002
gdc.openalex.fwci 7.19273075
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 135
gdc.plumx.crossrefcites 122
gdc.plumx.mendeley 33
gdc.plumx.scopuscites 164
gdc.scopus.citedcount 163
gdc.wos.citedcount 145
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files