Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Lie Group Approach To Solve the Fractional Poisson Equation

dc.contributor.author Hashemi, M. S.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, D.
dc.contributor.author Parto-Haghighi, M.
dc.contributor.other Matematik
dc.date.accessioned 2025-09-23T12:48:30Z
dc.date.available 2025-09-23T12:48:30Z
dc.date.issued 2015
dc.description Hashemi, Mir Sajjad/0000-0002-5529-3125 en_US
dc.description.abstract In the present paper, approximate solutions of fractional Poisson equation (FPE) have been considered using an integrator in the class of Lie groups, namely, the fictitious time integration method (FTIM). Based on the FTIM, the unknown dependent variable u(x, t) is transformed into a new variable with one more dimension. We use a fictitious time tau as the additional dimension (fictitious dimension), by transformation: v(x, t, tau) := (1 + tau)(k) u(x, t), where 0 < k <= 1 is a parameter to control the rate of convergency in the FTIM. Then the group preserving scheme (GPS) is used to integrate the new fractional partial differential equations in the augmented space R2+1. The power and the validity of the method are demonstrated using two examples. en_US
dc.identifier.citation Hashemi, M.S., Baleanu, D., Parto-Haghighi, M. (2015). A lie group approach to solve the fractional poisson equation. Romanian Journal of Physics, 60(9-10), 1289-1297. en_US
dc.identifier.issn 1221-146X
dc.identifier.uri https://hdl.handle.net/20.500.12416/15282
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Poisson Equation en_US
dc.subject Fictitious Time Integration Method en_US
dc.subject Caputo Derivative en_US
dc.subject Group-Preserving Scheme en_US
dc.title A Lie Group Approach To Solve the Fractional Poisson Equation en_US
dc.title A lie group approach to solve the fractional poisson equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hashemi, Mir Sajjad/0000-0002-5529-3125
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Hashemi, Mir Sajjad/M-4081-2015
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Hashemi, M. S.; Parto-Haghighi, M.] Univ Bonab, Basic Sci Fac, Dept Math, Bonab 55517, Iran; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 1297 en_US
gdc.description.issue 9-10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1289 en_US
gdc.description.volume 60 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000367360500005
gdc.index.type WoS
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 36
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files