Lattice Fractional Diffusion Equation in Terms of a Riesz-Caputo Difference
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Deng, Zhen-Guo | |
| dc.contributor.author | Zeng, Sheng-Da | |
| dc.contributor.author | Wu, Guo-Cheng | |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2017-03-29T08:54:27Z | |
| dc.date.accessioned | 2025-09-18T15:44:33Z | |
| dc.date.available | 2017-03-29T08:54:27Z | |
| dc.date.available | 2025-09-18T15:44:33Z | |
| dc.date.issued | 2015 | |
| dc.description | Wu, Guo-Cheng/0000-0002-1946-6770; Zeng, Shengda/0000-0003-1818-842X | en_US |
| dc.description.abstract | A fractional difference is defined by the use of the right and the left Caputo fractional differences. The definition is a two-sided operator of Riesz type and introduces back and forward memory effects in space difference. Then, a fractional difference equation method is suggested for anomalous diffusion in discrete finite domains. A lattice fractional diffusion equation is proposed and the numerical simulation of the diffusion process is discussed for various difference orders. The result shows that the Riesz difference model is particularly suitable for modeling complicated dynamical behaviors on discrete media. (C) 2015 Elsevier B.V. All rights reserved. | en_US |
| dc.description.publishedMonth | 11 | |
| dc.description.sponsorship | National Natural Science Foundation of China [11301257]; Innovative Team Program of the Neijiang Normal University [13TD02]; Guangxi Natural Science Foundation [2013GXNSFBA019021]; Scientific Research Foundation of GuangXi University [XBZ120542]; Fund of Sichuan Provincial Education Department [13ZB0006] | en_US |
| dc.description.sponsorship | This work was financially supported by the National Natural Science Foundation of China (Grant No. 11301257), the Innovative Team Program of the Neijiang Normal University (Grant No. 13TD02), the Guangxi Natural Science Foundation (Grant No. 2013GXNSFBA019021), the Scientific Research Foundation of GuangXi University (Grant No. XBZ120542) and the Fund of Sichuan Provincial Education Department (13ZB0006). | en_US |
| dc.identifier.citation | Wu, G.C...et al. (2015). Lattice fractional diffusion equation in terms of a Riesz-Caputo difference. Physica A-Statistical Mechanics And Its Applications, 438, 335-339. http://dx.doi.org/10.1016/j.physa.2015.06.024 | en_US |
| dc.identifier.doi | 10.1016/j.physa.2015.06.024 | |
| dc.identifier.issn | 0378-4371 | |
| dc.identifier.issn | 1873-2119 | |
| dc.identifier.scopus | 2-s2.0-84937836396 | |
| dc.identifier.uri | https://doi.org/10.1016/j.physa.2015.06.024 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14328 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Discrete Fractional Calculus | en_US |
| dc.subject | Riesz-Caputo Difference | en_US |
| dc.subject | Fractional Partial Difference Equations | en_US |
| dc.title | Lattice Fractional Diffusion Equation in Terms of a Riesz-Caputo Difference | en_US |
| dc.title | Lattice fractional diffusion equation in terms of a Riesz-Caputo difference | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Wu, Guo-Cheng/0000-0002-1946-6770 | |
| gdc.author.id | Zeng, Shengda/0000-0003-1818-842X | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 23390775700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 15843307100 | |
| gdc.author.scopusid | 55982308000 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Wu, Guo-Cheng/T-9088-2017 | |
| gdc.author.wosid | Zeng, Shengda/Abm-7231-2022 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Wu, Guo-Cheng; Zeng, Sheng-Da] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Sichuan, Peoples R China; [Wu, Guo-Cheng] Neijiang Normal Univ, Coll Math & Informat Sci, Inst Appl Nonlinear Sci, Neijiang 641100, Sichuan, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Deng, Zhen-Guo] Guangxi Univ, Sch Math & Informat Sci, Nanning 530004, Peoples R China | en_US |
| gdc.description.endpage | 339 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 335 | en_US |
| gdc.description.volume | 438 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W756327889 | |
| gdc.identifier.wos | WOS:000360871200031 | |
| gdc.openalex.fwci | 10.28147625 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 62 | |
| gdc.plumx.crossrefcites | 30 | |
| gdc.plumx.mendeley | 12 | |
| gdc.plumx.scopuscites | 79 | |
| gdc.scopus.citedcount | 79 | |
| gdc.wos.citedcount | 80 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |