Fractional Discrete-Time Diffusion Equation With Uncertainty: Applications of Fuzzy Discrete Fractional Calculus
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Mo, Zhi-Wen | |
| dc.contributor.author | Wu, Guo-Cheng | |
| dc.contributor.author | Huang, Lan-Lan | |
| dc.date.accessioned | 2020-03-24T11:21:59Z | |
| dc.date.accessioned | 2025-09-18T16:08:40Z | |
| dc.date.available | 2020-03-24T11:21:59Z | |
| dc.date.available | 2025-09-18T16:08:40Z | |
| dc.date.issued | 2018 | |
| dc.description | Huang, Lan-Lan/0000-0002-6375-9183; Wu, Guo-Cheng/0000-0002-1946-6770 | en_US |
| dc.description.abstract | This study provides some basics of fuzzy discrete fractional calculus as well as applications to fuzzy fractional discrete-time equations. With theories of r-cut set, fuzzy Caputo and Riemann-Liouville fractional differences are defined on a isolated time scale. Discrete Leibniz integral law is given by use of w-monotonicity conditions. Furthermore, equivalent fractional sum equations are established. Fuzzy discrete Mittag-Leffler functions are obtained by the Picard approximation. Finally, fractional discrete-time diffusion equations with uncertainty is investigated and exact solutions are expressed in form of two kinds of fuzzy discrete Mittag-Leffler functions. This paper suggests a discrete time tool for modeling discrete fractional systems with uncertainty. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
| dc.description.sponsorship | NSFC [11301257, 11671284]; Sichuan Provincial Natural Science Foundation [2015JY0002, 2017JY0197] | en_US |
| dc.description.sponsorship | The study was financially supported by the NSFC (Grant Nos. 11301257 and 11671284) and the Sichuan Provincial Natural Science Foundation (Grant Nos. 2015JY0002 and 2017JY0197). | en_US |
| dc.identifier.citation | Huang, Lan-Lan...et al. (2018). "Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus", Physica a-Statistical Mechanics and its Applications, Vol. 508, pp. 166-175. | en_US |
| dc.identifier.doi | 10.1016/j.physa.2018.03.092 | |
| dc.identifier.issn | 0378-4371 | |
| dc.identifier.issn | 1873-2119 | |
| dc.identifier.scopus | 2-s2.0-85047615666 | |
| dc.identifier.uri | https://doi.org/10.1016/j.physa.2018.03.092 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15137 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Bv | en_US |
| dc.relation.ispartof | Physica A: Statistical Mechanics and its Applications | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Difference Equations | en_US |
| dc.subject | Fuzzy-Valued Functions | en_US |
| dc.subject | Time Scale | en_US |
| dc.title | Fractional Discrete-Time Diffusion Equation With Uncertainty: Applications of Fuzzy Discrete Fractional Calculus | en_US |
| dc.title | Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Huang, Lan-Lan/0000-0002-6375-9183 | |
| gdc.author.id | Wu, Guo-Cheng/0000-0002-1946-6770 | |
| gdc.author.scopusid | 56141860200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 7103200609 | |
| gdc.author.scopusid | 23390775700 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Wu, Guo-Cheng/T-9088-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Huang, Lan-Lan; Mo, Zhi-Wen] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Wu, Guo-Cheng] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Jiangsu, Peoples R China | en_US |
| gdc.description.endpage | 175 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 166 | en_US |
| gdc.description.volume | 508 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2800151623 | |
| gdc.identifier.wos | WOS:000440122200017 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 11.0 | |
| gdc.oaire.influence | 3.9346872E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Fuzzy difference equations | |
| gdc.oaire.keywords | fractional difference equations | |
| gdc.oaire.keywords | Fuzzy ordinary differential equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Fuzzy real analysis | |
| gdc.oaire.keywords | time scale | |
| gdc.oaire.keywords | Difference operators | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | fuzzy-valued functions | |
| gdc.oaire.popularity | 1.6437875E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 4.71517638 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 23 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 30 | |
| gdc.publishedmonth | 10 | |
| gdc.scopus.citedcount | 30 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 29 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
