The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
| dc.contributor.author | Nazemi, Sayyedeh Zahra | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.date.accessioned | 2020-04-29T22:48:25Z | |
| dc.date.accessioned | 2025-09-18T12:09:43Z | |
| dc.date.available | 2020-04-29T22:48:25Z | |
| dc.date.available | 2025-09-18T12:09:43Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D-0+(alpha) + f(1)(t), u(t), v(t), (phi(1)u)(t), (psi(1)v)(t), D(0+)(p)u(t), D(0+)(mu 1)v(t), D(0+)(mu 2)v(t), ... , D(0+)(mu m)v(t)) = 0, D(0+)(beta)v(t) + f(2)(t, u(t), v(t), (phi(2)u)(t), (psi(2)v)(t), D(0+)(q)v(t), D(0+)(v1)v(t), D(0+)(v2)v(t), ... , D(0+)(vm)v(t) = 0, u((1))(0) = 0 and v((i))(0) = 0 for all 0 <= i <= n - 2, [D(0+)(delta 1)u(t)](t=1) - 0 for 2 < delta(1) < n - 1 and alpha - delta(1) >= 1, [D(0+)(delta 2)u(t)](t=1) - 0 for 2 < delta(2) < n - 1 and beta - delta(1) >= 1 where n >= 4 n - 1 < alpha, beta < n, 0 < 1, 1 < mu(i,) nu(i) < 2 (i = 1, 2, ... , m), gamma(j,) lambda(j) : [0, 1] x [0, 1] -> (0, infinity) are continuous functions (j = 1, 2) and (phi(j)u)(t) = integral(t)(0) gamma(j)(t, s)u(s)ds, (psi(j)v)(t) = integral(t)(0) gamma(j)(t, s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, f(j) (j = 1, 2) is a Caratheodory function, and f(j)(t, x, y, z, w, v, u(1), u(2), ... , u(m)) is singular at the value 0 of its variables. | en_US |
| dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
| dc.description.sponsorship | The research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions which improved the final version of this paper. | en_US |
| dc.identifier.citation | Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram, "The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems", Abstract and Applied Analysis, (2013). | en_US |
| dc.identifier.doi | 10.1155/2013/368659 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84890041136 | |
| dc.identifier.uri | https://doi.org/10.1155/2013/368659 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/11492 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Abstract and Applied Analysis | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems | en_US |
| dc.title | The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55246396100 | |
| gdc.author.scopusid | 55935081600 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Rezapour, Shahram/N-4883-2016 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-76900 Magurele, Romania; [Nazemi, Sayyedeh Zahra; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 9177948974, Iran | en_US |
| gdc.description.endpage | 15 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2013 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2038029373 | |
| gdc.identifier.wos | WOS:000327648000001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 3.4354222E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Impulsive Differential Equations | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Algorithm | |
| gdc.oaire.keywords | Boundary Value Problems | |
| gdc.oaire.keywords | Numerical Methods for Singularly Perturbed Problems | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Functional Differential Equations | |
| gdc.oaire.keywords | Finite Difference Schemes | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | positive solutions | |
| gdc.oaire.keywords | Singular nonlinear integral equations | |
| gdc.oaire.keywords | Riemann-Liouville fractional derivative | |
| gdc.oaire.keywords | singular fractional integro-differential boundary value problem | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Positive solutions of integral equations | |
| gdc.oaire.keywords | Carathéodory function | |
| gdc.oaire.keywords | Systems of nonlinear integral equations | |
| gdc.oaire.popularity | 2.7332083E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 4.05300798 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 10 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 23 | |
| gdc.scopus.citedcount | 23 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
