Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems

dc.contributor.author Nazemi, Sayyedeh Zahra
dc.contributor.author Rezapour, Shahram
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-04-29T22:48:25Z
dc.date.accessioned 2025-09-18T12:09:43Z
dc.date.available 2020-04-29T22:48:25Z
dc.date.available 2025-09-18T12:09:43Z
dc.date.issued 2013
dc.description.abstract We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D-0+(alpha) + f(1)(t), u(t), v(t), (phi(1)u)(t), (psi(1)v)(t), D(0+)(p)u(t), D(0+)(mu 1)v(t), D(0+)(mu 2)v(t), ... , D(0+)(mu m)v(t)) = 0, D(0+)(beta)v(t) + f(2)(t, u(t), v(t), (phi(2)u)(t), (psi(2)v)(t), D(0+)(q)v(t), D(0+)(v1)v(t), D(0+)(v2)v(t), ... , D(0+)(vm)v(t) = 0, u((1))(0) = 0 and v((i))(0) = 0 for all 0 <= i <= n - 2, [D(0+)(delta 1)u(t)](t=1) - 0 for 2 < delta(1) < n - 1 and alpha - delta(1) >= 1, [D(0+)(delta 2)u(t)](t=1) - 0 for 2 < delta(2) < n - 1 and beta - delta(1) >= 1 where n >= 4 n - 1 < alpha, beta < n, 0 < 1, 1 < mu(i,) nu(i) < 2 (i = 1, 2, ... , m), gamma(j,) lambda(j) : [0, 1] x [0, 1] -> (0, infinity) are continuous functions (j = 1, 2) and (phi(j)u)(t) = integral(t)(0) gamma(j)(t, s)u(s)ds, (psi(j)v)(t) = integral(t)(0) gamma(j)(t, s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, f(j) (j = 1, 2) is a Caratheodory function, and f(j)(t, x, y, z, w, v, u(1), u(2), ... , u(m)) is singular at the value 0 of its variables. en_US
dc.description.sponsorship Azarbaijan Shahid Madani University en_US
dc.description.sponsorship The research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions which improved the final version of this paper. en_US
dc.identifier.citation Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram, "The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems", Abstract and Applied Analysis, (2013). en_US
dc.identifier.doi 10.1155/2013/368659
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.scopus 2-s2.0-84890041136
dc.identifier.uri https://doi.org/10.1155/2013/368659
dc.identifier.uri https://hdl.handle.net/20.500.12416/11492
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.ispartof Abstract and Applied Analysis
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems en_US
dc.title The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7005872966
gdc.author.scopusid 55246396100
gdc.author.scopusid 55935081600
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Rezapour, Shahram/N-4883-2016
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-76900 Magurele, Romania; [Nazemi, Sayyedeh Zahra; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 9177948974, Iran en_US
gdc.description.endpage 15
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1
gdc.description.volume 2013
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W2038029373
gdc.identifier.wos WOS:000327648000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.4354222E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords Impulsive Differential Equations
gdc.oaire.keywords Fractional Differential Equations
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Computer science
gdc.oaire.keywords Algorithm
gdc.oaire.keywords Boundary Value Problems
gdc.oaire.keywords Numerical Methods for Singularly Perturbed Problems
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Functional Differential Equations
gdc.oaire.keywords Finite Difference Schemes
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords positive solutions
gdc.oaire.keywords Singular nonlinear integral equations
gdc.oaire.keywords Riemann-Liouville fractional derivative
gdc.oaire.keywords singular fractional integro-differential boundary value problem
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords Positive solutions of integral equations
gdc.oaire.keywords Carathéodory function
gdc.oaire.keywords Systems of nonlinear integral equations
gdc.oaire.popularity 2.7332083E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 4.05300798
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 10
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 23
gdc.scopus.citedcount 23
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 16
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files