The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
| dc.contributor.author | Nazemi, Sayyedeh Zahra | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2020-04-29T22:48:25Z | |
| dc.date.accessioned | 2025-09-18T12:09:43Z | |
| dc.date.available | 2020-04-29T22:48:25Z | |
| dc.date.available | 2025-09-18T12:09:43Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D-0+(alpha) + f(1)(t), u(t), v(t), (phi(1)u)(t), (psi(1)v)(t), D(0+)(p)u(t), D(0+)(mu 1)v(t), D(0+)(mu 2)v(t), ... , D(0+)(mu m)v(t)) = 0, D(0+)(beta)v(t) + f(2)(t, u(t), v(t), (phi(2)u)(t), (psi(2)v)(t), D(0+)(q)v(t), D(0+)(v1)v(t), D(0+)(v2)v(t), ... , D(0+)(vm)v(t) = 0, u((1))(0) = 0 and v((i))(0) = 0 for all 0 <= i <= n - 2, [D(0+)(delta 1)u(t)](t=1) - 0 for 2 < delta(1) < n - 1 and alpha - delta(1) >= 1, [D(0+)(delta 2)u(t)](t=1) - 0 for 2 < delta(2) < n - 1 and beta - delta(1) >= 1 where n >= 4 n - 1 < alpha, beta < n, 0 < 1, 1 < mu(i,) nu(i) < 2 (i = 1, 2, ... , m), gamma(j,) lambda(j) : [0, 1] x [0, 1] -> (0, infinity) are continuous functions (j = 1, 2) and (phi(j)u)(t) = integral(t)(0) gamma(j)(t, s)u(s)ds, (psi(j)v)(t) = integral(t)(0) gamma(j)(t, s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, f(j) (j = 1, 2) is a Caratheodory function, and f(j)(t, x, y, z, w, v, u(1), u(2), ... , u(m)) is singular at the value 0 of its variables. | en_US |
| dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
| dc.description.sponsorship | The research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions which improved the final version of this paper. | en_US |
| dc.identifier.citation | Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram, "The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems", Abstract and Applied Analysis, (2013). | en_US |
| dc.identifier.doi | 10.1155/2013/368659 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84890041136 | |
| dc.identifier.uri | https://doi.org/10.1155/2013/368659 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11492 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems | en_US |
| dc.title | The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55246396100 | |
| gdc.author.scopusid | 55935081600 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Rezapour, Shahram/N-4883-2016 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-76900 Magurele, Romania; [Nazemi, Sayyedeh Zahra; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 9177948974, Iran | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2038029373 | |
| gdc.identifier.wos | WOS:000327648000001 | |
| gdc.openalex.fwci | 4.05300798 | |
| gdc.openalex.normalizedpercentile | 0.95 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 10 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 23 | |
| gdc.scopus.citedcount | 23 | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |