Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems

dc.contributor.author Nazemi, Sayyedeh Zahra
dc.contributor.author Rezapour, Shahram
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2020-04-29T22:48:25Z
dc.date.accessioned 2025-09-18T12:09:43Z
dc.date.available 2020-04-29T22:48:25Z
dc.date.available 2025-09-18T12:09:43Z
dc.date.issued 2013
dc.description.abstract We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D-0+(alpha) + f(1)(t), u(t), v(t), (phi(1)u)(t), (psi(1)v)(t), D(0+)(p)u(t), D(0+)(mu 1)v(t), D(0+)(mu 2)v(t), ... , D(0+)(mu m)v(t)) = 0, D(0+)(beta)v(t) + f(2)(t, u(t), v(t), (phi(2)u)(t), (psi(2)v)(t), D(0+)(q)v(t), D(0+)(v1)v(t), D(0+)(v2)v(t), ... , D(0+)(vm)v(t) = 0, u((1))(0) = 0 and v((i))(0) = 0 for all 0 <= i <= n - 2, [D(0+)(delta 1)u(t)](t=1) - 0 for 2 < delta(1) < n - 1 and alpha - delta(1) >= 1, [D(0+)(delta 2)u(t)](t=1) - 0 for 2 < delta(2) < n - 1 and beta - delta(1) >= 1 where n >= 4 n - 1 < alpha, beta < n, 0 < 1, 1 < mu(i,) nu(i) < 2 (i = 1, 2, ... , m), gamma(j,) lambda(j) : [0, 1] x [0, 1] -> (0, infinity) are continuous functions (j = 1, 2) and (phi(j)u)(t) = integral(t)(0) gamma(j)(t, s)u(s)ds, (psi(j)v)(t) = integral(t)(0) gamma(j)(t, s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, f(j) (j = 1, 2) is a Caratheodory function, and f(j)(t, x, y, z, w, v, u(1), u(2), ... , u(m)) is singular at the value 0 of its variables. en_US
dc.description.sponsorship Azarbaijan Shahid Madani University en_US
dc.description.sponsorship The research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions which improved the final version of this paper. en_US
dc.identifier.citation Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram, "The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems", Abstract and Applied Analysis, (2013). en_US
dc.identifier.doi 10.1155/2013/368659
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.scopus 2-s2.0-84890041136
dc.identifier.uri https://doi.org/10.1155/2013/368659
dc.identifier.uri https://hdl.handle.net/123456789/11492
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems en_US
dc.title The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 55246396100
gdc.author.scopusid 55935081600
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Rezapour, Shahram/N-4883-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-76900 Magurele, Romania; [Nazemi, Sayyedeh Zahra; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 9177948974, Iran en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W2038029373
gdc.identifier.wos WOS:000327648000001
gdc.openalex.fwci 4.05300798
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 10
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 23
gdc.scopus.citedcount 23
gdc.wos.citedcount 16
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files