Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

An Inverse Problem of Reconstructing the Time-Dependent Coefficient in a One-Dimensional Hyperbolic Equation

dc.contributor.author Abbas, Muhammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Huntul, M. J.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-03-16T12:33:56Z
dc.date.accessioned 2025-09-18T12:47:35Z
dc.date.available 2022-03-16T12:33:56Z
dc.date.available 2025-09-18T12:47:35Z
dc.date.issued 2021
dc.description Huntul, Mousa J./0000-0001-5247-2913; Abbas, Dr. Muhammad/0000-0002-0491-1528 en_US
dc.description.abstract In this paper, for the first time the inverse problem of reconstructing the time-dependent potential (TDP) and displacement distribution in the hyperbolic problem with periodic boundary conditions (BCs) and nonlocal initial supplemented by over-determination measurement is numerically investigated. Though the inverse problem under consideration is ill-posed by being unstable to noise in the input data, it has a unique solution. The Crank-Nicolson-finite difference method (CN-FDM) along with the Tikhonov regularization (TR) is applied for calculating an accurate and stable numerical solution. The programming language MATLAB built-in lsqnonlin is used to solve the obtained nonlinear minimization problem. The simulated noisy input data can be inverted by both analytical and numerically simulated. The obtained results show that they are accurate and stable. The stability analysis is performed by using Fourier series. en_US
dc.description.publishedMonth 10
dc.identifier.citation Huntul, M. J.; Abbas, Muhammad; Baleanu, Dumitru (2021). "An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation", Advances in Difference Equations, Vol. 2021, No. 1. en_US
dc.identifier.doi 10.1186/s13662-021-03608-1
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85117324826
dc.identifier.uri https://doi.org/10.1186/s13662-021-03608-1
dc.identifier.uri https://hdl.handle.net/123456789/11848
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Hyperbolic Equation en_US
dc.subject Inverse Problem en_US
dc.subject Periodic Boundary en_US
dc.subject Integral Boundary en_US
dc.subject Tikhonov Regularization en_US
dc.subject Optimization en_US
dc.title An Inverse Problem of Reconstructing the Time-Dependent Coefficient in a One-Dimensional Hyperbolic Equation en_US
dc.title An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Huntul, Mousa J./0000-0001-5247-2913
gdc.author.id Abbas, Dr. Muhammad/0000-0002-0491-1528
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57192910985
gdc.author.scopusid 43660960400
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Abbas, Muhammad/K-8190-2019
gdc.author.wosid Huntul, Mousa/Y-1653-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Huntul, M. J.] Jazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia; [Abbas, Muhammad] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-769000 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2021 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3205389944
gdc.identifier.wos WOS:000707593900002
gdc.openalex.fwci 1.97554697
gdc.openalex.normalizedpercentile 0.89
gdc.opencitations.count 3
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files