Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Convolution of Functions and Distributions

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press inc Elsevier Science

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The non-commutative convolution f * g of two distributions f and g in V is defined to be the limit of the sequence {(f tau(n)) * g}, provided the limit exists, where {tau(n)} is a certain sequence of functions in D converging to 1. It is proved that vertical bar x vertical bar(lambda) * (sgnx vertical bar x vertical bar(mu)) = 2 sin(lambda pi/2)cos(mu pi/2)/sin[(lambda+mu)pi/2] B(lambda+1, mu+1) sgn x vertical bar x vertical bar(lambda+mu+1), for -1 < lambda + mu < 0 and lambda, mu not equal -1, -2,..., where B denotes the Beta function. (c) 2005 Elsevier Inc. All rights reserved.

Description

Tas, Kenan/0000-0001-8173-453X

Keywords

Distribution, Dirac Delta Function, Convolution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Fisher, B.; Taş, K., "The convolution of functions and distributions", Journal Of Mathematical Analysis And Applications, Vol.306, No.1, pp.364-374, (2005).

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
7

Source

Volume

306

Issue

1

Start Page

364

End Page

374
PlumX Metrics
Citations

CrossRef : 6

Scopus : 13

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available