The Convolution of Functions and Distributions
No Thumbnail Available
Date
2005
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press inc Elsevier Science
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The non-commutative convolution f * g of two distributions f and g in V is defined to be the limit of the sequence {(f tau(n)) * g}, provided the limit exists, where {tau(n)} is a certain sequence of functions in D converging to 1. It is proved that vertical bar x vertical bar(lambda) * (sgnx vertical bar x vertical bar(mu)) = 2 sin(lambda pi/2)cos(mu pi/2)/sin[(lambda+mu)pi/2] B(lambda+1, mu+1) sgn x vertical bar x vertical bar(lambda+mu+1), for -1 < lambda + mu < 0 and lambda, mu not equal -1, -2,..., where B denotes the Beta function. (c) 2005 Elsevier Inc. All rights reserved.
Description
Tas, Kenan/0000-0001-8173-453X
ORCID
Keywords
Distribution, Dirac Delta Function, Convolution
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Fisher, B.; Taş, K., "The convolution of functions and distributions", Journal Of Mathematical Analysis And Applications, Vol.306, No.1, pp.364-374, (2005).
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
7
Source
Volume
306
Issue
1
Start Page
364
End Page
374
PlumX Metrics
Citations
CrossRef : 6
Scopus : 13
Captures
Mendeley Readers : 2
Google Scholar™
