Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Enhanced Task Scheduling in Iaas Cloud Environments Using Elitism-Based Genetic Algorithms

dc.authorscopusid 57188752414
dc.authorscopusid 59696673800
dc.authorscopusid 25926575100
dc.authorscopusid 58725997500
dc.authorscopusid 57195383596
dc.contributor.author Osama, M.
dc.contributor.author Sultan Mohiuddin Qadri, S.S.
dc.contributor.author Shams Malick, R.A.
dc.contributor.author Shahid, M.F.
dc.contributor.author Dawood, K.
dc.date.accessioned 2025-05-13T11:56:54Z
dc.date.available 2025-05-13T11:56:54Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp Osama M., National University of Computer & Emerging Sciences, Department of Computer Science, Karachi, Pakistan; Sultan Mohiuddin Qadri S.S., Çankaya University, Department of Industrial Engineering, Ankara, Turkey; Shams Malick R.A., GU Tech, Al Ghazali University, Department of Computer Science, Karachi, Pakistan; Shahid M.F., National University of Computer & Emerging Sciences, Department of Artificial Intelligence, Karachi, Pakistan; Dawood K., Senior R&D Specialist Astor Enerji, Ankara, Turkey en_US
dc.description.abstract Cloud computing (CC) is a modern commercial model that enables customers to acquire large amounts of virtual resources on demand. Among the various service models in CC, Infrastructure as a Service (IaaS) provides Virtual Machines (VMs) and data centers. Efficient task scheduling, which maps cloud tasks to VMs, is key to optimizing data center performance and reducing energy consumption. Given the heterogeneous nature and computational intensity of these tasks, meta-heuristic methods are often employed for scheduling. This research proposes an enhanced Genetic Algorithm (GA) that integrates an Elitism-Based strategy with Conditional Parameter Tuning to improve convergence speed and solution quality. The elitism approach preserves top-performing solutions across generations, while conditional parameter tuning dynamically adjusts algorithm parameters based on population diversity and fitness levels. Experimental evaluations on Amazon EC2 show that the proposed method significantly outperforms traditional approaches in task completion time, resource utilization, and convergence efficiency. The results demonstrate the effectiveness of combining elitism with adaptive strategies to create a scalable, robust solution for task scheduling in high-demand cloud environments. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/ELTICOM64085.2024.10865043
dc.identifier.endpage 67 en_US
dc.identifier.isbn 9798331531249
dc.identifier.scopus 2-s2.0-105000186607
dc.identifier.scopusquality N/A
dc.identifier.startpage 62 en_US
dc.identifier.uri https://doi.org/10.1109/ELTICOM64085.2024.10865043
dc.identifier.uri https://hdl.handle.net/20.500.12416/9757
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - ELTICOM 2024: 8th International Conference on Electrical, Telecommunication and Computer Engineering: Tech-Driven Innovations for Global Organizational Resilience -- 8th International Conference on Electrical, Telecommunication and Computer Engineering, ELTICOM 2024 -- 21 November 2024 through 22 November 2024 -- Medan -- 206643 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Cloud Computing en_US
dc.subject Elitism en_US
dc.subject Genetic Algorithm en_US
dc.subject Task Scheduling en_US
dc.subject Virtual Machines en_US
dc.title Enhanced Task Scheduling in Iaas Cloud Environments Using Elitism-Based Genetic Algorithms en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files