Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On a New Definition of Fractional Differintegrals With Mittag-Leffler Kernel

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Univ Nis, Fac Sci Math

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

We introduce a new family of fractional differential and integral operators which emerge from a fractional iteration process applied to some existing fractional operators with Mittag-Leffler kernels. We analyse the new operators and prove various facts about them, including a semigroup property. We also solve some ODEs in this new model by using Laplace transforms, and discuss applications of our results.

Description

Keywords

Fractional Calculus, Semigroup Property, Mittag-Leffler Function, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 26A33, 34A08, Mittag-Leffler function, Fractional derivatives and integrals, Fractional ordinary differential equations, fractional calculus, semigroup property

Turkish CoHE Thesis Center URL

Fields of Science

0101 mathematics, 01 natural sciences

Citation

Fernandez, Arran; Baleanu, Dumitru, "On a New Definition of Fractional Differintegrals with Mittag-Leffler Kernel", Filomat, Vol. 33, No. 1, pp. 245-254, (2019).

WoS Q

Q2

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
13

Source

Filomat

Volume

33

Issue

1

Start Page

245

End Page

254
PlumX Metrics
Citations

CrossRef : 12

Scopus : 15

Captures

Mendeley Readers : 1

SCOPUS™ Citations

15

checked on Feb 02, 2026

Web of Science™ Citations

16

checked on Feb 02, 2026

Page Views

3

checked on Feb 02, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.3776738

Sustainable Development Goals

SDG data is not available