Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Combining covid-19 case prediction and analysis of seasonal data impacts using deep learning methods

dc.contributor.author İpekçi, Yiğitcan
dc.date.accessioned 2023-03-02T11:27:56Z
dc.date.available 2023-03-02T11:27:56Z
dc.date.issued 2021
dc.description.abstract Tüm dünyayı etkisi altına alan korona virüs (COVID-19) salgını milyonlarca insanı etkilemiş, yüzbinlerce hatta milyonlarca kişinin ölümüne neden olmuştur. Bu salgın birçok ülkenin ekonomik ve sosyal hayatını büyük ölçüde etkiledi. Alınan tedbirler bunu engelleyemedi ve toplum hazırlıksız yakalandı. Vaka sayısındaki artış oranının tahmin edilmesi, özellikle sağlık altyapısı ile ilgili idari süreçlerin planlanmasında büyük önem taşımaktadır. Bu tahminler için matematiksel modeller ve derin öğrenme yöntemleri kullanılır. Ayrıca farklı türdeki yapay zekâ temelli yaklaşımlarda geliştirilmektedir. Bu çalışmada, İtalya'daki COVID-19 vakalarının sayısındaki değişiklikleri tahmin etmek için, uzun kısa süreli bellek (LSTM) tabanlı sinir ağı yaklaşımı ile ileriye dönük bir tahmin yapılmıştır. Çalışmada 24 Şubat- 1 Kasım 2020 tarihleri arasında İtalya'da günlük vaka, ölüm ve iyileşen hasta sayıları kullanıldı. Ayrıca mevsimsel değişikliklerin salgın üzerindeki etkileri de bu döneme ait meteorolojik veriler kullanılarak analiz edilmiştir. Buna ek olarak, COVID19 salgınında 14 günlük kuluçka dönemi dikkate alınarak, meteorolojik parametrelerin geçmiş değerlerinin vakalar üzerindeki etkisi deneysel çalışmalarla ortaya konmuştur. Sonuçlar, uzun kısa süreli bellek (LSTM) yönteminin önleyici adımların atılması durumunda önemli bir avantaj sağlayabileceğini ve aynı zamanda LSTM ağına mevsimsel verilerin eklenerek vaka tahmininde başarı oranlarının arttığını göstermektedir. Anahtar Kelimeler: Derin öğrenme, Yapay Sinir Ağları, Uzun Kısa Süreli Bellek, Pandemi, COVID-19 en_US
dc.description.abstract The new coronavirus (Covid-19) epidemic, which has affected the whole world, has infected millions of people and caused the death of hundreds of thousands, even millions of people. This epidemic has greatly affected the economics and social life of many countries. The measures taken could not prevent this and the society was caught unprepared. Estimating the rate of increase in the number of cases, is of great importance especially in the planning of administrative processes related to health infrastructure. Mathematical models and deep learning methods are used for these predictions. It is also being developed in various artificial intelligence-based approaches. In this study, in order to predict the changes in the number of COVID-19 cases in Italy, a forward forecast is made with a long short-term memory (LSTM) based neural network approach. In the study, the number of daily cases, deaths and recovered patients in Italy between Feb 24 and Nov 1, 2020 were used. In addition to, the effects of seasonal changes on the epidemic are analyzed using the meteorological data of this period. In addition to this, considering the 14-day incubation period in the COVID19 outbreak, the effect of historical values of meteorological parameters on cases is demonstrated by experimental studies. The results show that the Long short-term memory (LSTM) method can provide a significant advantage in case prediction to take preventive steps, and at the same time, seasonal data are added to the LSTM network, increasing the success rates in case prediction. Keywords: Deep learning, Artificial Neural Networks, Long Short-Term Memory (LSTMs), Pandemic, COVID-19 en_US
dc.identifier.citation İpekçi, Yiğitcan (2021). Combining covid-19 case prediction and analysis of seasonal data impacts using deep learning methods / Derin öğrenme yöntemleri kullanılarak özgeçmişler üzerinde anahtar kelime çıkarımı. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi, Fen Bilimleri Enstitüsü. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/6293
dc.language.iso en en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Neural Network en_US
dc.subject Deep Learngng en_US
dc.subject Long Short-Term Memory (LSTM) en_US
dc.subject Pandemgc en_US
dc.subject COVID-19 en_US
dc.subject Derin Öğrenme en_US
dc.subject Yapay Sinir Ağları en_US
dc.subject Uzun Kısa Süreli Bellek en_US
dc.subject Pandemi en_US
dc.title Combining covid-19 case prediction and analysis of seasonal data impacts using deep learning methods tr_TR
dc.title Combining Covid-19 Case Prediction and Analysis of Seasonal Data Impacts Using Deep Learning Methods en_US
dc.title.alternative Derin Öğrenme Yöntemleri Kullanılarak Özgeçmişler Üzerinde Anahtar Kelime Çıkarımı en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Çankaya Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 68 en_US
gdc.description.startpage 1 en_US
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
Yazar sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: