Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Babakhani, Azizollah | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2020-04-09T20:36:28Z | |
| dc.date.accessioned | 2025-09-18T16:07:42Z | |
| dc.date.available | 2020-04-09T20:36:28Z | |
| dc.date.available | 2025-09-18T16:07:42Z | |
| dc.date.issued | 2012 | |
| dc.description | Baleanu, Dumitru/0000-0002-0286-7244 | en_US |
| dc.description.abstract | We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations (D-alpha - rho tD(beta))x(t) = f(t, x(t), D(gamma)x(t)), t is an element of (0, 1) with boundary conditions x(0) = x(0), x(1) = x(1) or satisfying the initial conditions x(0) = 0, x'(0) = 1, where D-alpha denotes Caputo fractional derivative, rho is constant, 1 < alpha < 2, and 0 < beta + gamma <= alpha. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions on f. | en_US |
| dc.identifier.citation | Babakhani, Azizollah; Baleanu, Dumitru, "Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations", Abstract and Applied Analysis, (2012) | en_US |
| dc.identifier.doi | 10.1155/2012/632681 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84864947175 | |
| dc.identifier.uri | https://doi.org/10.1155/2012/632681 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14849 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations | en_US |
| dc.title | Existence and Uniqueness of Solution for A Class of Nonlinear Fractional Order Differential Equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Baleanu, Dumitru/0000-0002-0286-7244 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7801309777 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Babakhani, Azizollah] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar 4714871167, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2172138495 | |
| gdc.identifier.wos | WOS:000307595200001 | |
| gdc.openalex.fwci | 0.71875973 | |
| gdc.openalex.normalizedpercentile | 0.71 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |