Interfacial Behavior and Diffusion Mechanisms of Bni-2 Brazing on Titanium Alloy: Experimental and Molecular Dynamics Insights
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
ContextJoining titanium alloys, particularly Ti-6Al-4V, is crucial in aerospace applications where reliable, high-performance joints are needed. Brazing offers an effective solution, enabling the joining of dissimilar materials without melting the base metals. However, optimizing the wetting and diffusion behavior of filler metals remains a challenge. This study investigates the high-temperature interaction between BNi-2 filler alloy and Ti-6Al-4V. Boron, the primary melting point depressant in BNi-2, was examined due to its small atomic size and interstitial diffusion mechanism. Elevated temperatures led to improved wetting, reflected by decreased contact angles. Both wetting angles and boron diffusion coefficients were obtained through molecular dynamics simulations and experimental measurements, showing reasonable correlation. These results provide valuable insight into interfacial mechanisms and support further optimization of brazing parameters.MethodsMolecular dynamics simulations were performed using LAMMPS to analyze the temperature-dependent wetting behavior of molten BNi-2 on Ti-6Al-4V and track atomic-scale diffusion. Initial atomic configurations were modeled and simulated under various conditions. Trajectory data were analyzed using OVITO for structural evolution. Boron diffusion was evaluated by calculating mean square displacement from LAMMPS outputs. These values were used to derive diffusion coefficients and activation energies. Parallel experiments were conducted to assess wetting angles and diffusion behavior, and simulation results were compared with experimental data. The consistency between both approaches highlights the reliability of the modeling framework in capturing essential mechanisms during the brazing process.
Description
Keywords
Ti-6Al-4V Brazing, Vacuum Brazing, Wettability, Diffusion Of Boron, Molecular Dynamic
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
Q3

OpenCitations Citation Count
N/A
Source
Volume
31
Issue
7
Start Page
End Page
PlumX Metrics
Citations
Scopus : 0
Google Scholar™

OpenAlex FWCI
0.0
Sustainable Development Goals
9
INDUSTRY, INNOVATION AND INFRASTRUCTURE
