Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Extended Mittag-Leffler Function Via Fractional Calculus

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Al Qurashi, Maysaa
dc.contributor.author Purohit, Sunil Dutt
dc.contributor.author Mubeen, Shahid
dc.contributor.author Arshad, Muhammad
dc.contributor.author Rahman, Gauhar
dc.date.accessioned 2020-02-28T08:36:59Z
dc.date.accessioned 2025-09-18T14:10:35Z
dc.date.available 2020-02-28T08:36:59Z
dc.date.available 2025-09-18T14:10:35Z
dc.date.issued 2017
dc.description Rahman, Gauhar/0000-0002-2728-7537; Arshad, Muhammad/0000-0003-3041-328X en_US
dc.description.abstract In this study, our main attempt is to introduce fractional calculus (fractional integral and differential) operators which contain the following new family of extended Mittag-Leffler function: E-alpha,beta(gamma;q,c) (z) = Sigma(infinity)(n=0) B-p (gamma + nq, c - gamma)(c)(nq) z(n)/B(gamma, c - gamma)Gamma(alpha n + beta) n!' (z,beta,gamma is an element of C), as its kernel. We also investigate a certain number of their consequences containing the said function in their kernels. (C) 2017 All rights reserved. en_US
dc.description.sponsorship International Scientific Partnership Program ISPP at King Saud University [63]; Interreg [63] Funding Source: Interreg en_US
dc.description.sponsorship The authors would like to thank the anonymous referee for his/her comments that helped us to improve this article. The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#63. en_US
dc.identifier.citation Rahman, Gauhar...et al. (2017). "The extended Mittag-Leffler function via fractional calculus", Journal Of Nonlinear Sciences And Applications, Vol.10, No.8, pp.4244-4253. en_US
dc.identifier.doi 10.22436/jnsa.010.08.19
dc.identifier.issn 2008-1898
dc.identifier.issn 2008-1901
dc.identifier.uri https://doi.org/10.22436/jnsa.010.08.19
dc.identifier.uri https://hdl.handle.net/20.500.12416/13738
dc.language.iso en en_US
dc.publisher int Scientific Research Publications en_US
dc.relation.ispartof The Journal of Nonlinear Sciences and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Integration en_US
dc.subject Differential Operator en_US
dc.subject Mittag-Leffler Function en_US
dc.subject Lebesgue Measurable Function en_US
dc.subject Extended Mittag-Leffler Function en_US
dc.title The Extended Mittag-Leffler Function Via Fractional Calculus en_US
dc.title The extended Mittag-Leffler function via fractional calculus tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Rahman, Gauhar/0000-0002-2728-7537
gdc.author.id Arshad, Muhammad/0000-0003-3041-328X
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Mubeen, Shahid/K-8622-2019
gdc.author.wosid Purohit, Sunil/F-3017-2011
gdc.author.wosid Rahman, Gauhar/Aap-7213-2021
gdc.author.wosid Arshad, Muhammad/Mah-8073-2025
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Rahman, Gauhar; Arshad, Muhammad] Int Islamic Univ, Dept Math, Islamabad, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, Coll Sci, Riyadh, Saudi Arabia; [Purohit, Sunil Dutt] Rajasthan Tech Univ, Dept HEAS Math, Kota, India; [Mubeen, Shahid] Univ Sargodha, Dept Math, Sargodha, Pakistan en_US
gdc.description.endpage 4253 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 4244 en_US
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W2749156727
gdc.identifier.wos WOS:000409353500019
gdc.index.type WoS
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 35.0
gdc.oaire.influence 9.8026005E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Mittag-Leffler function
gdc.oaire.keywords extended Mittag-Leffler function
gdc.oaire.keywords Other functions defined by series and integrals
gdc.oaire.keywords Generalized hypergeometric series, \({}_pF_q\)
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords Lebesgue measurable function
gdc.oaire.keywords differential operator
gdc.oaire.keywords Functions of one variable
gdc.oaire.keywords fractional integration
gdc.oaire.popularity 3.4523918E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 7.61208199
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 68
gdc.plumx.mendeley 10
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 88
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files