Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Confidence-based reasoning in stochastic constraint programming

dc.authorid Rossi, Roberto/0000-0001-7247-1010
dc.authorid Prestwich, Steven/0000-0002-6218-9158
dc.authorid Tarim, S. Armagan/0000-0001-5601-3968
dc.authorid Hnich, Brahim/0000-0001-8875-8390
dc.authorscopusid 35563636800
dc.authorscopusid 6602458958
dc.authorscopusid 6506794189
dc.authorscopusid 7004234709
dc.authorwosid Tarim, S./B-4414-2010
dc.authorwosid Hnich, Brahim/B-4435-2010
dc.authorwosid Rossi, Roberto/B-4397-2010
dc.contributor.author Rossi, Roberto
dc.contributor.author Hnich, Brahim
dc.contributor.author Tarim, S. Armagan
dc.contributor.author Prestvvich, Steven
dc.contributor.authorID 6641 tr_TR
dc.date.accessioned 2017-04-25T07:36:32Z
dc.date.available 2017-04-25T07:36:32Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Rossi, Roberto] Univ Edinburgh, Sch Business, Edinburgh EH8 9JS, Midlothian, Scotland; [Hnich, Brahim] Taif Univ, Dept Comp Sci, At Taif, Saudi Arabia; [Tarim, S. Armagan] Cankaya Univ, Dept Management, Ankara, Turkey; [Tarim, S. Armagan; Prestvvich, Steven] Natl Univ Ireland Univ Coll Cork, Insight Ctr Data Analyt, Cork, Ireland en_US
dc.description Rossi, Roberto/0000-0001-7247-1010; Prestwich, Steven/0000-0002-6218-9158; Tarim, S. Armagan/0000-0001-5601-3968; Hnich, Brahim/0000-0001-8875-8390 en_US
dc.description.abstract In this work we introduce a novel approach, based on sampling, for finding assignments that are likely to be solutions to stochastic constraint satisfaction problems and constraint optimisation problems. Our approach reduces the size of the original problem being analysed; by solving this reduced problem, with a given confidence probability, we obtain assignments that satisfy the chance constraints in the original model within prescribed error tolerance thresholds. To achieve this, we blend concepts from stochastic constraint programming and statistics. We discuss both exact and approximate variants of our method. The framework we introduce can be immediately employed in concert with existing approaches for solving stochastic constraint programs. A thorough computational study on a number of stochastic combinatorial optimisation problems demonstrates the effectiveness of our approach. (C) 2015 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 11
dc.description.sponsorship Science Foundation Ireland (SFI) [SFI/12/RC/2289] en_US
dc.description.sponsorship This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Rossi, R., Hnich, B., Tarım, S.A., Prestvvich, S. (2015). Confidence-based reasoning in stochastic constraint programming. Artificial Intelligence, 228, 129-152. http://dx.doi.org/10.1016/j.artint.2015.07.004 en_US
dc.identifier.doi 10.1016/j.artint.2015.07.004
dc.identifier.endpage 152 en_US
dc.identifier.issn 0004-3702
dc.identifier.issn 1872-7921
dc.identifier.scopus 2-s2.0-84938330226
dc.identifier.scopusquality Q1
dc.identifier.startpage 129 en_US
dc.identifier.uri https://doi.org/10.1016/j.artint.2015.07.004
dc.identifier.volume 228 en_US
dc.identifier.wos WOS:000361405800005
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject Confidence-Based Reasoning en_US
dc.subject Stochastic Constraint Programming en_US
dc.subject Sampled Scsp en_US
dc.subject (Alpha, Theta)-Solution en_US
dc.subject (Alpha, Theta)-Solution Set en_US
dc.subject Confidence Interval Analysis en_US
dc.subject Global Chance Constraint en_US
dc.title Confidence-based reasoning in stochastic constraint programming tr_TR
dc.title Confidence-Based Reasoning in Stochastic Constraint Programming en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: