Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Laplace decomposition for solving nonlinear system of fractional order partial differential equations

dc.contributor.author Khan, Hassan
dc.contributor.author Shah, Rasool
dc.contributor.author Kumam, Poom
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Arif, Muhammad
dc.date.accessioned 2020-12-31T11:28:54Z
dc.date.available 2020-12-31T11:28:54Z
dc.date.issued 2020
dc.description.abstract In the present article a modified decomposition method is implemented to solve systems of partial differential equations of fractional-order derivatives. The derivatives of fractional-order are expressed in terms of Caputo operator. The validity of the proposed method is analyzed through illustrative examples. The solution graphs have shown a close contact between the exact and LADM solutions. It is observed that the solutions of fractional-order problems converge towards the solution of an integer-order problem, which confirmed the reliability of the suggested technique. Due to better accuracy and straightforward implementation, the extension of the present method can be made to solve other fractional-order problems. en_US
dc.identifier.citation Khan, Hassan...et al. (2020). "Laplace decomposition for solving nonlinear system of fractional order partial differential equations", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02839-y
dc.identifier.issn 1687-1847
dc.identifier.uri https://hdl.handle.net/20.500.12416/4416
dc.language.iso en en_US
dc.relation.ispartof Advances in Difference Equations en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo Operator en_US
dc.subject Adomian Decomposition Method en_US
dc.subject Laplace Transformation en_US
dc.subject Fractional Systems of Partial Differential Equations en_US
dc.title Laplace decomposition for solving nonlinear system of fractional order partial differential equations tr_TR
dc.title Laplace Decomposition for Solving Nonlinear System of Fractional Order Partial Differential Equations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.yokid 56389
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü en_US
gdc.description.issue 1 en_US
gdc.description.volume 2020 en_US
gdc.identifier.openalex W3044135167
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 35.0
gdc.oaire.influence 4.979437E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Decomposition method (queueing theory)
gdc.oaire.keywords Economics
gdc.oaire.keywords Biochemistry
gdc.oaire.keywords Gene
gdc.oaire.keywords Engineering
gdc.oaire.keywords Differential equation
gdc.oaire.keywords Ecology
gdc.oaire.keywords Physics
gdc.oaire.keywords Partial differential equation
gdc.oaire.keywords Discrete mathematics
gdc.oaire.keywords Programming language
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Laplace transform
gdc.oaire.keywords Caputo operator
gdc.oaire.keywords Fractional Order Control
gdc.oaire.keywords Operator (biology)
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Quantum mechanics
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Biology
gdc.oaire.keywords Fractional systems of partial differential equations
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Order (exchange)
gdc.oaire.keywords Analysis and Design of Fractional Order Control Systems
gdc.oaire.keywords Decomposition
gdc.oaire.keywords Laplace transformation
gdc.oaire.keywords Extension (predicate logic)
gdc.oaire.keywords Fractional calculus
gdc.oaire.keywords Statistical and Nonlinear Physics
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Computer science
gdc.oaire.keywords Physics and Astronomy
gdc.oaire.keywords Control and Systems Engineering
gdc.oaire.keywords FOS: Biological sciences
gdc.oaire.keywords Nonlinear system
gdc.oaire.keywords Repressor
gdc.oaire.keywords Adomian decomposition method
gdc.oaire.keywords Fractional Calculus
gdc.oaire.keywords Integer (computer science)
gdc.oaire.keywords Transcription factor
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Ordinary differential equation
gdc.oaire.keywords Finance
gdc.oaire.keywords Rogue Waves in Nonlinear Systems
gdc.oaire.keywords fractional systems of partial differential equations
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
gdc.oaire.popularity 4.0123822E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 1.60189328
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 43
gdc.plumx.crossrefcites 37
gdc.plumx.mendeley 22
gdc.plumx.scopuscites 59
gdc.publishedmonth 7
gdc.virtual.author Baleanu, Dumitru
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: